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Preface

This book has its roots in the report of the Committee on Developments
in the Science of Learning, How People Learn: Brain, Mind, Experience and
School (National Research Council, 1999, National Academy Press). That
report presented an illuminating review of research in a variety of fields that
has advanced understanding of human learning. The report also made an
important attempt to draw from that body of knowledge implications for
teaching. A follow-on study by a second committee explored what research
and development would need to be done, and how it would need to be
communicated, to be especially useful to teachers, principals, superinten-
dents, and policy makers: How People Learn: Bridging Research and Prac-
tice (National Research Council, 1999). These two individual reports were
combined to produce an expanded edition of How People Learn (National
Research Council, 2000). We refer to this volume as HPL.

In the present book, the goal is to take the HPL work to the next step: to
provide examples of how the principles and findings on learning can be
used to guide the teaching of a set of topics that commonly appear in the K-
12 curriculum. As was the case in the original work (1999), the book focuses
on three subject areas: history, mathematics, and science. Each area is treated
at three levels: elementary, middle, and high school. Distinguished research-
ers who have extensive experience in teaching or in partnering with teach-
ers were invited to contribute the chapters. The committee shaped the goals
for the volume, and commented—sometimes extensively—on the draft chap-
ters as they were written and revised. The principles of HPL are embedded
in each chapter, though there are differences from one chapter to the next in
how explicitly they are discussed.
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Taking this next step to elaborate the HPL principles in context poses a
potential problem that we wish to address at the outset. The meaning and
relevance of the principles for classroom teaching can be made clearer with
specific examples. At the same time, however, many of the specifics of a
particular example could be replaced with others that are also consistent
with the HPL principles. In looking at a single example, it can be difficult to
distinguish what is necessary to effective teaching from what is effective but
easily replaced. With this in mind, it is critical that the teaching and learning
examples in each chapter be seen as illustrative, not as blueprints for the
“right” way to teach.

We can imagine, by analogy, that engineering students will better grasp
the relationship between the laws of physics and the construction of effec-
tive supports for a bridge if they see some examples of well-designed bridges,
accompanied by explanations for the choices of the critical design features.
The challenging engineering task of crossing the entrance of the San Fran-
cisco Bay, for example, may bring the relationship between physical laws,
physical constraints, and engineering solutions into clear and meaningful
focus. But there are some design elements of the Golden Gate Bridge that
could be replaced with others that serve the same end, and people may well
differ on which among a set of good designs creates the most appealing
bridge.

 To say that the Golden Gate Bridge is a good example of a suspension
bridge does not mean it is the only, or the best possible, design for a
suspension bridge. If one has many successful suspension bridges to com-
pare, the design features that are required for success, and those that are
replaceable, become more apparent. And the requirements that are uni-
form across contexts, and the requirements that change with context, are
more easily revealed.

The chapters in this volume highlight different approaches to address-
ing the same fundamental principles of learning. It would be ideal to be able
to provide two or more “HPL compatible” approaches to teaching the same
topic (for example, the study of light in elementary school). However, we
cannot provide that level of specific variability in this already lengthy vol-
ume. Nevertheless, we hope that common features across chapters, and the
variation in approach among the chapters, are sufficient to provide instruc-
tive insights into the principles laid out in How People Learn.

This volume could not have come to life without the help and dedica-
tion of many people, and we are grateful to them. First and foremost, the
committee acknowledges the contributions of Robbie Case, who was to
have contributed to the mathematics chapters in this volume. Robbie was at
the height of a very productive career when his life came to an unexpected
end in May 2000. Robbie combined the very best in disciplinary research
and attention to the incorporation of research findings into classroom tools
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to support teaching and learning. In this respect, he was a model for re-
searchers interested in supporting improved educational practice. The math-
ematics chapters in this volume are marked by Robbie Case’s influence.

 The financial support of our sponsors, the U.S. Department of Educa-
tion and the President’s Circle of the National Academy of Sciences, was
essential. We appreciate both their support and their patience during the
unexpectedly long period required to shape and produce so extensive a
volume with so many different contributors. Our thanks to C. Kent McGuire,
former assistant secretary of the Office of Education Research and Improve-
ment for providing the initial grant for this project, and to his successor and
now director of the National Institute for Education Sciences, Grover J.
Whitehurst; thanks are due as well to Patricia O’Connell Ross, Jill Edwards
Staton, Michael Kestner, and Linda Jones at the Department of Education for
working with us throughout, and providing the time required to produce a
quality product.

This report is a somewhat unusual undertaking for the National Re-
search Council in that the committee members did not author the report
chapters, but served as advisers to the chapter authors. The contributions of
committee members were extraordinary. In a first meeting the committee
and chapter authors worked together to plan the volume. The committee
then read each draft chapter, and provided extensive, and remarkably pro-
ductive, feedback to chapter authors. As drafts were revised, committee
members reviewed them again, pointing out concerns and proposing poten-
tial solutions. Their generosity and their commitment to the goal of this
project are noteworthy.

Alexandra Wigdor, director of the Division on Education, Labor, and
Human Performance when this project was begun, provided ongoing guid-
ance and experienced assistance with revisions. Rona Brière brought her
special skills in editing the entire volume. Our thanks go to Allison E. Shoup,
who was senior project assistant, supporting the project through much of its
life; to Susan R. McCutchen, who prepared the manuscript for review; to
Claudia Sauls and Candice Crawford, who prepared the final manuscript;
and to Deborah Johnson, Sandra Smotherman, and Elizabeth B. Townsend,
who willingly provided additional support when needed. Kirsten Sampson
Snyder handled the report review process, and Yvonne Wise handled report
production—both challenging tasks for a report of this size and complexity.
We are grateful for their help.

This report has been reviewed in draft form by individuals chosen for
their diverse perspectives and technical expertise, in accordance with proce-
dures approved by the National Research Council’s Report Review Commit-
tee. The purpose of this independent review is to provide candid and critical
comments that will assist the institution in making its published report as
sound as possible and to ensure that the report meets institutional standards
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for objectivity, evidence, and responsiveness to the study charge. The re-
view comments and draft manuscript remain confidential to protect the in-
tegrity of the deliberative process. We thank the following individuals for
their review of this report: Jo Boaler, Mathematics Education, School of Edu-
cation, Stanford University; Miriam L. Clifford, Mathematics Department, Carroll
College, Waukesha, Wisconsin; O.L. Davis, Curriculum and Instruction, The
University of Texas at Austin; Patricia B. Dodge, Science Teacher, Essex
Middle School, Essex Junction, Vermont; Carol T. Hines, History Teacher,
Darrel C. Swope Middle School, Reno, Nevada; Janis Lariviere, UTeach—
Science and Mathematics Teacher Preparation, The University of Texas at
Austin; Gaea Leinhardt, Learning Research and Development Center and
School of Education, University of Pittsburgh; Alan M. Lesgold, Office of the
Provost, University of Pittsburgh; Marcia C. Linn, Education in Mathematics,
Science, and Technology, University of California, Berkeley; Kathleen Metz,
Cognition and Development, Graduate School of Education, University of
California, Berkeley; Thomas Romberg, National Center for Research in Math-
ematics and Science Education, University of Wisconsin–Madison; and Peter
Seixas, Centre for the Study of Historical Consciousness, University of British
Columbia.

Although the reviewers listed above have provided many constructive
comments and suggestions, they did not see the final draft of the report
before its release. The review of this report was overseen by Alan M. Lesgold,
University of Pittsburgh. Appointed by the National Research Council, he
was responsible for making certain that an independent examination of this
report was carried out in accordance with institutional procedures and that
all review comments were carefully considered. Responsibility for the final
content of this report rests entirely with the authors, the committee, and the
institution.

John D. Bransford, Chair
M. Suzanne Donovan, Study Director



xi

Contents

1 Introduction 1
M. Suzanne Donovan and John D. Bransford

A Fish Story, 2
Learning Environments and the Design of Instruction, 12
Putting the Principles to Work in the Classroom, 20
Intent and Organization of This Volume, 21
Notes, 25
References, 26

Part I:
History

2 Putting Principles into Practice: Understanding History 31
Peter J. Lee

History and Everyday Ideas, 33
Substantive Concepts, 61
History That Works, 65
Notes, 73
References, 74

3 Putting Principles into Practice: Teaching and Planning 79
Rosalyn Ashby, Peter J. Lee, and Denis Shemilt

The Reality Test, 80
Working with Evidence: Pilgrim Fathers and Native Americans, 84
Working with Evidence: The St. Brendan’s Voyage Task, 119



xii CONTENTS

Appendix 3A: Implications for Planning, 164
Notes, 177
References, 177

4 “They Thought the World Was Flat?”: Applying the Principles of
How People Learn in Teaching High School History 179

Robert B. Bain
Where to Begin? Transforming Topics and Objectives into

Historical Problems, 181
Designing a “History-Considerate” Learning Environment:

Tools for Historical Thinking, 199
Conclusion, 209
Acknowledgments, 210
Notes, 211
References, 212

Part II:
Mathematics

5 Mathematical Understanding: An Introduction 217
Karen C. Fuson, Mindy Kalchman, and John D. Bransford

Principle #1: Teachers Must Engage Students’ Preconceptions, 219
Principle #2: Understanding Requires Factual Knowledge and

Conceptual Frameworks, 231
Principle #3: A Metacognitive Approach Enables Student

Self-Monitoring, 236
Next Steps, 243
Notes, 246
References, 246
Suggested Reading List for Teachers, 256

6 Fostering the Development of Whole-Number Sense:
Teaching Mathematics in the Primary Grades 257

Sharon Griffin
Deciding What Knowledge to Teach, 259
Building on Children’s Current Understandings, 267
Acknowledging Teachers’ Conceptions and Partial

Understandings, 279
Revisiting Question 2: Defining the Knowledge That

Should Be Taught, 281
How Can This Knowledge Be Taught?:

The Case of Number Worlds, 282
What Sorts of Learning Does This Approach Make Possible?, 302



CONTENTS xiii

Summary and Conclusion,  305
Acknowledgments, 306
Notes, 306
References, 306

7 Pipes, Tubes, and Beakers: New Approaches to Teaching the
Rational-Number System 309

Joan Moss
Rational-Number Learning and the Principles of

How People Learn, 312
Instruction in Rational Number, 319
Conclusion: How Students Learn Rational Number, 341
Notes, 343
References, 345

8 Teaching and Learning Functions 351
Mindy Kalchman and Kenneth R. Koedinger

Addressing the Three Principles, 359
Teaching Functions for Understanding, 373
Summary, 389
Acknowledgments, 391
Notes, 392
References, 392
Other Relevant Readings, 393

Part III:
Science

9 Scientific Inquiry and How People Learn 397
John D. Bransford and M. Suzanne Donovan

Principle #1: Addressing Preconceptions, 399
Principle #2: Knowledge of What It Means to “Do Science,” 403
Principle #3: Metacognition, 407
The How People Learn Framework, 411
Conclusion, 415
Notes, 416
References, 416

10 Teaching to Promote the Development of Scientific Knowledge
and Reasoning About Light at the Elementary School Level 421

Shirley J. Magnusson and Annemarie Sullivan Palinscar
The Study of Light, 422
The Study of Light Through Inquiry, 426



xiv CONTENTS

Supporting Learning Through Cycles of Investigation, 460
The Role of Subject-Specific Knowledge in Effective

Science Instruction, 467
Conclusion, 469
Notes, 470
References, 472

11 Guided Inquiry in the Science Classroom 475
James Minstrell and Pamela Kraus

The Unit: The Nature of Gravity and Its Effects, 477
Summary, 511
Notes, 512

12 Developing Understanding Through Model-Based Inquiry 515
James Stewart, Jennifer L. Cartier, and Cynthia M. Passmore

Genetics, 516
Developing Darwin’s Model of Natural Selection in High

School Evolution, 540
Classroom Environments That Support Learning with

Understanding, 555
Summary, 561
Notes, 562
References, 563

A Final Synthesis:
Revisiting the Three Learning Principles

13 Pulling Threads 569
M. Suzanne Donovan and John D. Bransford

Engaging Resilient Preconceptions, 569
Organizing Knowledge Around Core Concepts, 575
Supporting Metacognition, 577
Principles of Learning and Classroom Environments, 586
Notes, 588
References, 589
Other Resources, 590

Biographical Sketches of Committee Members and Contributors 591

Index 597



How Students Learn
HISTORY, MATHEMATICS, AND SCIENCE 

IN THE CLASSROOM





INTRODUCTION 1

1

Introduction
M. Suzanne Donovan and John D. Bransford

More than any other species, people are designed to be flexible learners
and, from infancy, are active agents in acquiring knowledge and skills. People
can invent, record, accumulate, and pass on organized bodies of knowledge
that help them understand, shape, exploit, and ornament their environment.
Much that each human being knows about the world is acquired informally,
but mastery of the accumulated knowledge of generations requires inten-
tional learning, often accomplished in a formal educational setting.

Decades of work in the cognitive and developmental sciences has pro-
vided the foundation for an emerging science of learning. This foundation
offers conceptions of learning processes and the development of competent
performance that can help teachers support their students in the acquisition
of knowledge that is the province of formal education. The research litera-
ture was synthesized in the National Research Council report How People
Learn: Brain, Mind, Experience, and School.1  In this volume, we focus on
three fundamental and well-established principles of learning that are high-
lighted in How People Learn and are particularly important for teachers to
understand and be able to incorporate in their teaching:

1. Students come to the classroom with preconceptions about how the
world works. If their initial understanding is not engaged, they may fail to
grasp the new concepts and information, or they may learn them for pur-
poses of a test but revert to their preconceptions outside the classroom.

2. To develop competence in an area of inquiry, students must (a) have
a deep foundation of factual knowledge, (b) understand facts and ideas in
the context of a conceptual framework, and (c) organize knowledge in ways
that facilitate retrieval and application.
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3. A “metacognitive” approach to instruction can help students learn to
take control of their own learning by defining learning goals and monitoring
their progress in achieving them.

A FISH STORY
The images from a children’s story, Fish Is Fish,2  help convey the es-

sence of the above principles. In the story, a young fish is very curious about
the world outside the water. His good friend the frog, on returning from the
land, tells the fish about it excitedly:

“I have been about the world—hopping here and there,”
said the frog, “and I have seen extraordinary things.”
“Like what?” asked the fish.
“Birds,” said the frog mysteriously. “Birds!” And he told the
fish about the birds, who had wings, and two legs, and
many, many colors. As the frog talked, his friend saw the
birds fly through his mind like large feathered fish.

The frog continues with descriptions of cows, which the fish imagines
as black-and-white spotted fish with horns and udders, and humans, which
the fish imagines as fish walking upright and dressed in clothing. Illustra-
tions below from Leo Lionni’s Fish Is Fish © 1970.  Copyright renewed 1998
by Leo Lionni. Used by permission of Random House Children’s Books, a
division of Random House, Inc.
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Principle #1: Engaging Prior Understandings

What Lionni’s story captures so effectively is a fundamental insight about
learning: new understandings are constructed on a foundation of existing
understandings and experiences. With research techniques that permit the
study of learning in infancy and tools that allow for observation of activity in
the brain, we understand as never before how actively humans engage in
learning from the earliest days of life (see Box 1-1). The understandings
children carry with them into the classroom, even before the start of formal
schooling, will shape significantly how they make sense of what they are

Research studies have demonstrated that infants as young as 3 to 4 months of
age develop understandings and expectations about the physical world. For ex-
ample, they understand that objects need support to prevent them from falling to
the ground, that stationary objects may be displaced when they come into contact
with moving objects, and that objects at rest must be propelled into motion.3

In research by Needham and Baillargeon,4 infants were shown a table on which
a box rested. A gloved hand reached out from a window beside the table and
placed another box in one of two locations: on top of the first box (the possible
event), and beyond the box—creating the impression that the box was suspended
in midair. In this and similar studies, infants look reliably longer at the impossible
events, suggesting an awareness and a set of expectations regarding what is and
is not physically possible.

SOURCE:  Needham  and Baillargeon (1993).  Reprinted with permission from
Elsevier.

BOX 1-1 The Development of Physical Concepts in Infancy
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taught. Just as the fish constructed an image of a human as a modified fish,
children use what they know to shape their new understandings.

While prior learning is a powerful support for further learning, it can
also lead to the development of conceptions that can act as barriers to learn-
ing. For example, when told that the earth is round, children may look to
reconcile this information with their experience with balls. It seems obvious
that one would fall off a round object. Researchers have found that some
children solve the paradox by envisioning the earth as a pancake, a “round”
shape with a surface on which people could walk without falling off.6

How People Learn summarizes a number of studies demonstrating the
active, preconception-driven learning that is evident in humans from infancy
through adulthood.7  Preconceptions developed from everyday experiences
are often difficult for teachers to change because they generally work well
enough in day-to-day contexts. But they can impose serious constraints on
understanding formal disciplines. College physics students who do well on
classroom exams on the laws of motion, for example, often revert to their
untrained, erroneous models outside the classroom. When they are con-
fronted with tasks that require putting their knowledge to use, they fail to
take momentum into account, just as do elementary students who have had
no physics training (see Box 1-2). If students’ preconceptions are not ad-
dressed directly, they often memorize content (e.g., formulas in physics), yet
still use their experience-based preconceptions to act in the world.

Andrea DiSessa5 conducted a study in which he compared the performance of
college physics students at a top technological university with that of elementary
schoolchildren on a task involving momentum. He instructed both sets of students
to play a computerized game that required them to direct a simulated object (a
dynaturtle) so that it would hit a target, and to do so with minimum speed at im-
pact. Participants were introduced to the game and given a hands-on trial that al-
lowed them to apply a few taps with a wooden mallet to a ball on a table before
they began.

DiSessa found that both groups of students failed miserably at the task. De-
spite their training, college physics majors—just like the elementary school chil-
dren—applied the force when the object was just below the target, failing to take
momentum into account. Further investigation with one college student revealed
that she knew the relevant physical properties and formulas and would have per-
formed well on a written exam. Yet in the context of the game, she fell back on her
untrained conceptions of how the physical world works.

BOX 1-2  Misconceptions About Momentum
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Principle #2: The Essential Role of Factual Knowledge
and Conceptual Frameworks in Understanding

The Fish Is Fish story also draws attention to the kinds of knowledge,
factual and conceptual, needed to support learning with understanding. The
frog in the story provides information to the fish about humans, birds, and
cows that is accurate and relevant, yet clearly insufficient. Feathers, legs,
udders, and sport coats are surface features that distinguish each species.
But if the fish (endowed now with human thinking capacity) is to under-
stand how the land species are different from fish and different from each
other, these surface features will not be of much help. Some additional,
critical concepts are needed—for example, the concept of adaptation. Spe-
cies that move through the medium of air rather than water have a different
mobility challenge. And species that are warm-blooded, unlike those that
are cold-blooded, must maintain their body temperature. It will take more
explaining of course, but if the fish is to see a bird as something other than
a fish with feathers and wings and a human as something other than an
upright fish with clothing, then feathers and clothing must be seen as adap-
tations that help solve the problem of maintaining body temperature, and
upright posture and wings must be seen as different solutions to the prob-
lem of mobility outside water.

Conceptual information such as a theory of adaptation represents a kind
of knowledge that is unlikely to be induced from everyday experiences. It
typically takes generations of inquiry to develop this sort of knowledge, and
people usually need some help (e.g., interactions with “knowledgeable oth-
ers”) to grasp such organizing concepts.8

Lionni’s fish, not understanding the described features of the land ani-
mals as adaptations to a terrestrial environment, leaps from the water to
experience life on land for himself. Since he can neither breathe nor maneu-
ver on land, the fish must be saved by the amphibious frog. The point is well
illustrated: learning with understanding affects our ability to apply what is
learned (see Box 1-3).

This concept of learning with understanding has two parts: (1) factual
knowledge (e.g., about characteristics of different species) must be placed
in a conceptual framework (about adaptation) to be well understood; and
(2) concepts are given meaning by multiple representations that are rich in
factual detail. Competent performance is built on neither factual nor concep-
tual understanding alone; the concepts take on meaning in the knowledge-
rich contexts in which they are applied. In the context of Lionni’s story, the
general concept of adaptation can be clarified when placed in the context of
the specific features of humans, cows, and birds that make the abstract
concept of adaptation meaningful.
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This essential link between the factual knowledge base and a concep-
tual framework can help illuminate a persistent debate in education: whether
we need to emphasize “big ideas” more and facts less, or are producing
graduates with a factual knowledge base that is unacceptably thin. While
these concerns appear to be at odds, knowledge of facts and knowledge of
important organizing ideas are mutually supportive. Studies of experts and
novices—in chess, engineering, and many other domains—demonstrate that
experts know considerably more relevant detail than novices in tasks within
their domain and have better memory for these details (see Box 1-4). But the
reason they remember more is that what novices see as separate pieces of
information, experts see as organized sets of ideas.

Engineering experts, for example, can look briefly at a complex mass of
circuitry and recognize it as an amplifier, and so can reproduce many of its
circuits from memory using that one idea. Novices see each circuit sepa-
rately, and thus remember far fewer in total. Important concepts, such as
that of an amplifier, structure both what experts notice and what they are
able to store in memory. Using concepts to organize information stored in
memory allows for much more effective retrieval and application. Thus, the
issue is not whether to emphasize facts or “big ideas” (conceptual knowl-
edge); both are needed. Memory of factual knowledge is enhanced by con-
ceptual knowledge, and conceptual knowledge is clarified as it is used to
help organize constellations of important details. Teaching for understand-
ing, then, requires that the core concepts such as adaptation that organize
the knowledge of experts also organize instruction. This does not mean that
that factual knowledge now typically taught, such as the characteristics of
fish, birds, and mammals, must be replaced. Rather, that factual information
is given new meaning and a new organization in memory because those
features are seen as adaptive characteristics.

In one of the most famous early studies comparing the effects of “learning a proce-
dure” with “learning with understanding,” two groups of children practiced throw-
ing darts at a target underwater.9  One group received an explanation of refraction of
light, which causes the apparent location of the target to be deceptive. The other
group only practiced dart throwing, without the explanation. Both groups did equally
well on the practice task, which involved a target 12 inches under water. But the
group that had been instructed about the abstract principle did much better when
they had to transfer to a situation in which the target was under only 4 inches of
water. Because they understood what they were doing, the group that had received
instruction about the refraction of light could adjust their behavior to the new task.

BOX 1-3 Learning with Understanding Supports Knowledge
Use in New Situations
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BOX 1-4 Experts Remember Considerably More Relevant Detail Than
Novices in Tasks Within Their Domain
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In one study, a chess master, a Class A player (good but not a master),
and a novice were given 5 seconds to view a chess board position from
the middle of a chess game (see below).

After 5 seconds the board was covered, and each participant at-
tempted to reconstruct the board position on another board. This proce-
dure was repeated for multiple trials until everyone received a perfect
score. On the first trial, the master player correctly placed many more
pieces than the Class A player, who in turn placed more than the novice:
16, 8, and 4, respectively. (See data graphed below.)

However, these results occurred only when the chess pieces were
arranged in configurations that conformed to meaningful games of chess.
When chess pieces were randomized and presented for 5 seconds, the
recall of the chess master and Class A player was the same as that of the
novice—they all placed 2 to 3 positions correctly. The apparent difference
in memory capacity is due to a difference in pattern recognition. What the
expert can remember as a single meaningful pattern, novices must re-
member as separate, unrelated items.
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Principle #3: The Importance of Self-Monitoring

Hero though he is for saving the fish’s life, the frog in Lionni’s story gets
poor marks as a teacher. But the burden of learning does not fall on the
teacher alone. Even the best instructional efforts can be successful only if the
student can make use of the opportunity to learn. Helping students become
effective learners is at the heart of the third key principle: a “metacognitive”
or self-monitoring approach can help students develop the ability to take
control of their own learning, consciously define learning goals, and moni-
tor their progress in achieving them. Some teachers introduce the idea of
metacognition to their students by saying, “You are the owners and opera-
tors of your own brain, but it came without an instruction book. We need to
learn how we learn.”

“Meta” is a prefix that can mean after, along with, or beyond. In the
psychological literature, “metacognition” is used to refer to people’s knowl-
edge about themselves as information processors. This includes knowledge
about what we need to do in order to learn and remember information (e.g.,
most adults know that they need to rehearse an unfamiliar phone number to
keep it active in short-term memory while they walk across the room to dial
the phone). And it includes the ability to monitor our current understanding
to make sure we understand (see Box 1-5). Other examples include moni-
toring the degree to which we have been helpful to a group working on a
project.10

BOX 1-5 Metacognitive Monitoring: An Example

Read the following passage from a literary critic, and pay attention to the strategies you
use to comprehend:

If a serious literary critic were to write a favorable, full-length review of How Could I Tell
Mother She Frightened My Boyfriends Away, Grace Plumbuster’s new story, his startled read-
ers would assume that he had gone mad, or that Grace Plumbuster was his editor’s wife.

Most good readers have to back up several times in order to grasp the meaning of
this passage. In contrast, poor readers tend to simply read it all the way through without
pausing and asking if the passage makes sense. Needless to say, when asked to para-
phrase the passage they fall short.

SOURCE: Whimbey and Whimbey (1975, p. 42).
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In Lionni’s story, the fish accepted the information about life on land
rather passively. Had he been monitoring his understanding and actively
comparing it with what he already knew, he might have noted that putting
on a hat and jacket would be rather uncomfortable for a fish and would slow
his swimming in the worst way. Had he been more engaged in figuring out
what the frog meant, he might have asked why humans would make them-
selves uncomfortable and compromise their mobility. A good answer to his
questions might have set the stage for learning about differences between
humans and fish, and ultimately about the notion of adaptation. The con-
cept of metacognition includes an awareness of the need to ask how new
knowledge relates to or challenges what one already knows—questions that
stimulate additional inquiry that helps guide further learning.11

The early work on metacognition was conducted with young children
in laboratory contexts.12  In studies of “metamemory,” for example, young
children might be shown a series of pictures (e.g., drum, tree, cup) and
asked to remember them after 15 seconds of delay (with the pictures no
longer visible). Adults who receive this task spontaneously rehearse during
the 15-second interval. Many of the children did not. When they were ex-
plicitly told to rehearse, they would do so, and their memory was very good.
But when the children took part in subsequent trials and were not reminded
to rehearse, many failed to rehearse even though they were highly moti-
vated to perform well in the memory test. These findings suggest that the
children had not made the “metamemory” connection between their re-
hearsal strategies and their short-term memory abilities.13

Over time, research on metacognition (of which metamemory is consid-
ered a subset) moved from laboratory settings to the classroom. One of the
most striking applications of a metacognitive approach to instruction was
pioneered by Palincsar and Brown in the context of “reciprocal teaching.”14

Middle school students worked in groups (guided by a teacher) to help one
another learn to read with understanding. A key to achieving this goal in-
volves the ability to monitor one’s ongoing comprehension and to initiate
strategies such as rereading or asking questions when one’s comprehension
falters. (Box 1-5 illustrates this point.) When implemented appropriately,
reciprocal teaching has been shown to have strong effects on improving
students’ abilities to read with understanding in order to learn.

Appropriate kinds of self-monitoring and reflection have been demon-
strated to support learning with understanding in a variety of areas. In one
study,15  for example, students who were directed to engage in self-explana-
tion as they solved mathematics problems developed deeper conceptual
understanding than did students who solved those same problems but did
not engage in self-explanation. This was true even though the common time
limitation on both groups meant that the self-explaining students solved
fewer problems in total.
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Helping students become more metacognitive about their own thinking
and learning is closely tied to teaching practices that emphasize self-assess-
ment. The early work of Thorndike16 demonstrated that feedback is impor-
tant for learning. However, there is a difference between responding to
feedback that someone else provides and actively seeking feedback in order
to assess one’s current levels of thinking and understanding. Providing sup-
port for self-assessment is an important component of effective teaching.
This can include giving students opportunities to test their ideas by building
things and seeing whether they work, performing experiments that seek to
falsify hypotheses, and so forth. Support for self-assessment is also provided
by opportunities for discussion where teachers and students can express
different views and explore which ones appear to make the most sense.
Such questioning models the kind of dialogue that effective learners inter-
nalize. Helping students explicitly understand that a major purpose of these
activities is to support metacognitive learning is an important component of
successful teaching strategies.17

Supporting students to become aware of and engaged in their own
learning will serve them well in all learning endeavors. To be optimally
effective, however, some metacognitive strategies need to be taught in the
context of individual subject areas. For example, guiding one’s learning in a
particular subject area requires awareness of the disciplinary standards for
knowing. To illustrate, asking the question “What is the evidence for this
claim?” is relevant whether one is studying history, science, or mathematics.
However, what counts as evidence often differs. In mathematics, for ex-
ample, formal proof is very important. In science, formal proofs are used
when possible, but empirical observations and experimental data also play a
major role. In history, multiple sources of evidence are sought and attention
to the perspective from which an author writes and to the purpose of the
writing is particularly important. Overall, knowledge of the discipline one is
studying affects people’s abilities to monitor their own understanding and
evaluate others’ claims effectively.

LEARNING ENVIRONMENTS AND THE DESIGN
OF INSTRUCTION

The key principles of learning discussed above can be organized into a
framework for thinking about teaching, learning, and the design of class-
room and school environments. In How People Learn, four design character-
istics are described that can be used as lenses to evaluate the effectiveness of
teaching and learning environments. These lenses are not themselves re-
search findings; rather, they are implications drawn from the research base:
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• The learner-centered lens encourages attention to preconceptions,
and begins instruction with what students think and know.

• The knowledge-centered lens focuses on what is to be taught, why it
is taught, and what mastery looks like.

• The assessment-centered lens emphasizes the need to provide fre-
quent opportunities to make students’ thinking and learning visible as a
guide for both the teacher and the student in learning and instruction.

•  The community-centered lens encourages a culture of questioning,
respect, and risk taking.

These aspects of the classroom environment are illustrated in Figure 1-1
and are discussed below.

Community

Learner
centered

Assessment
centered

Knowledge
centered

FIGURE 1-1 Perspectives on learning environments.
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Learner-Centered Classroom Environments

Instruction must begin with close attention to students’ ideas, knowl-
edge, skills, and attitudes, which provide the foundation on which new
learning builds. Sometimes, as in the case of Lionni’s fish, learners’ existing
ideas lead to misconceptions. More important, however, those existing con-
ceptions can also provide a path to new understandings. Lionni’s fish mis-
takenly projects the model of a fish onto humans, birds, and cows. But the
fish does know a lot about being a fish, and that experience can provide a
starting point for understanding adaptation. How do the scales and fins of a
fish help it survive? How would clothing and feathers affect a fish? The fish’s
existing knowledge and experience provide a route to understanding adap-
tation in other species. Similarly, the ideas and experiences of students pro-
vide a route to new understandings both about and beyond their experi-
ence.

Sometimes the experiences relevant to teaching would appear to be
similar for all students: the ways in which forces act on a falling ball or
feather, for example. But students in any classroom are likely to differ in
how much they have been encouraged to observe, think about, or talk
about a falling ball or feather. Differences may be larger still when the sub-
ject is a social rather than a natural phenomenon because the experiences
themselves, as well as norms regarding reflection, expression, and interac-
tion, differ for children from different families, communities, and cultures.
Finally, students’ expectations regarding their own performances, including
what it means to be intelligent, can differ in ways that affect their persistence
in and engagement with learning.

Being learner-centered, then, involves paying attention to students’ back-
grounds and cultural values, as well as to their abilities. To build effectively
on what learners bring to the classroom, teachers must pay close attention
to individual students’ starting points and to their progress on learning
tasks. They must present students with “just-manageable difficulties”—chal-
lenging enough to maintain engagement and yet not so challenging as to
lead to discouragement. They must find the strengths that will help students
connect with the information being taught. Unless these connections are
made explicitly, they often remain inert and so do not support subsequent
learning.

Knowledge-Centered Classroom Environments

While the learner-centered aspects of the classroom environment focus
on the student as the starting point, the knowledge-centered aspects focus
on what is taught (subject matter), why it is taught (understanding), how
the knowledge should be organized to support the development of exper-
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tise (curriculum), and what competence or mastery looks like (learning
goals). Several important questions arise when one adopts the knowledge-
centered lens:

• What is it important for students to know and be able to do?
• What are the core concepts that organize our understanding of this

subject matter, and what concrete cases and detailed knowledge will allow
students to master those concepts effectively?

• How will we know when students achieve mastery?18 This question
overlaps the knowledge-centered and assessment-centered lenses.

An important point that emerges from the expert–novice literature is
the need to emphasize connected knowledge that is organized around the
foundational ideas of a discipline. Research on expertise shows that it is
the organization of knowledge that underlies experts’ abilities to under-
stand and solve problems.19  Bruner, one of the founding fathers of the
new science of learning, has long argued the importance of this insight to
education:20

The curriculum of a subject should be determined by the most fundamental
understanding that can be achieved of the underlying principles that give
structure to a subject. Teaching specific topics or skills without making
clear their context in the broader fundamental structure of a field of knowl-
edge is uneconomical. . . . An understanding of fundamental principles and
ideas appears to be the main road to adequate transfer of training. To
understand something as a specific instance of a more general case—which
is what understanding a more fundamental structure means—is to have
learned not only a specific thing but also a model for understanding other
things like it that one may encounter.

Knowledge-centered and learner-centered environments intersect when
educators take seriously the idea that students must be supported to de-
velop expertise over time; it is not sufficient to simply provide them with
expert models and expect them to learn. For example, intentionally organiz-
ing subject matter to allow students to follow a path of “progressive differen-
tiation” (e.g., from qualitative understanding to more precise quantitative
understanding of a particular phenomenon) involves a simultaneous focus
on the structure of the knowledge to be mastered and the learning process
of students.21

In a comparative study of the teaching of mathematics in China and the
United States, Ma sought to understand why Chinese students outperform
students from the United States in elementary mathematics, even though
teachers in China often have less formal education. What she documents is



16 HOW STUDENTS LEARN

that Chinese teachers are far more likely to identify core mathematical con-
cepts (such as decomposing a number in subtraction with regrouping), to
plan instruction to support mastery of the skills and knowledge required for
conceptual understanding, and to use those concepts to develop clear con-
nections across topics (see Box 1-6).

If identifying a set of “enduring connected ideas” is critical to effective
educational design, it is a task not just for teachers, but also for the develop-
ers of curricula, text books, and other instructional materials; universities
and other teacher preparation institutions; and the public and private groups
involved in developing subject matter standards for students and their teach-
ers. There is some good work already in place, but much more needs to be
done. Indeed, an American Association for the Advancement of Science
review of middle school and high school science textbooks found that al-
though a great deal of detailed and sophisticated material was presented,
very little attention was given to the concepts that support an understanding
of the discipline.22

Each of the chapters in this volume describes core ideas in a subject
area that support conceptual understanding and that connect the particular
topic discussed to the larger discipline: the concepts of historical evidence
and perspective in history; the concepts of proportionality and dependence
in mathematics; and the concepts of scientific evidence and modeling in
science. Because textbooks sometimes focus primarily on facts and details
and neglect organizing principles, creating a knowledge-centered classroom
will often require that a teacher go beyond the textbook to help students see
a structure to the knowledge, mainly by introducing them to essential con-
cepts. These chapters provide examples of how this might be done.

Assessment-Centered Classroom Environments

Formative assessments—ongoing assessments designed to make students’
thinking visible to both teachers and students—are essential. Assessments
are a central feature of both a learner-centered and a knowledge-centered
classroom. They permit the teacher to grasp students’ preconceptions, which
is critical to working with and building on those notions. Once the knowl-
edge to be learned is well defined, assessment is required to monitor stu-
dent progress (in mastering concepts as well as factual information), to un-
derstand where students are in the developmental path from informal to
formal thinking, and to design instruction that is responsive to student progress.

An important feature of the assessment-centered classroom is assess-
ment that supports learning by providing students with opportunities to
revise and improve their thinking.23  Such assessments help students see
their own progress over time and point to problems that need to be ad-
dressed in instruction. They may be quite informal. A physics teacher, for
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example, reports showing students who are about to study structure a video
clip of a bridge collapsing. He asks his students why they think the bridge
collapsed. In giving their answers, the students reveal their preconceptions
about structure. Differences in their answers provide puzzles that engage
the students in self-questioning. As the students study structure, they can
mark their changing understanding against their initial beliefs. Assessment in
this sense provides a starting point for additional instruction rather than a
summative ending. Formative assessments are often referred to as “class-
room-based assessments” because, as compared with standardized assess-
ments, they are most likely to occur in the context of the classrooms. How-
ever, many classroom-based assessments are summative rather than formative
(they are used to provide grades at the end of a unit with no opportunities to
revise). In addition, one can use standardized assessments in a formative
manner (e.g., to help teachers identify areas where students need special
help).

Ultimately, students need to develop metacognitive abilities—the habits
of mind necessary to assess their own progress—rather than relying solely
on external indicators. A number of studies show that achievement improves
when students are encouraged to assess their own contributions and work.24

It is also important to help students assess the kinds of strategies they are
using to learn and solve problems. For example, in quantitative courses such
as physics, many students simply focus on formulas and fail to think first
about the problem to be solved and its relation to key ideas in the discipline
(e.g., Newton’s second law). When students are helped to do the latter, their
performance on new problems greatly improves.25

The classroom interactions described in the following chapters provide
many examples of formative assessment in action, though these interactions
are often not referred to as assessments. Early activities or problems given to
students are designed to make student thinking public and, therefore, ob-
servable by teachers. Work in groups and class discussions provide students
with the opportunity to ask each other questions and revise their own think-
ing. In some cases, the formative assessments are formal; in elementary
mathematics, for example, the number knowledge test allows teachers to
quickly assess the current mastery level of a student in order to guide the
choice of the subsequent instructional activities. But even when informal,
the teaching described in those chapters involves frequent opportunities for
both teachers and students to assess understanding and its progress over
time.

Community-Centered Classroom Environments

A community-centered approach requires the development of norms
for the classroom and school, as well as connections to the outside world,
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BOX 1-6 Organizing Knowledge Around Core Concepts: Subtraction with
Regrouping26

A study by Ma27  compares the knowledge of elementary mathematics of teachers in the
United States and in China. She gives the teachers the following scenario (p. 1):

Look at these questions (52 – 25; 91 – 79 etc.). How would you approach
these problems if you were teaching second grade? What would you say
pupils would need to understand or be able to do before they could start
learning subtraction with regrouping?

The responses of teachers were wide-ranging, reflecting very different levels of un-
derstanding of the core mathematical concepts. Some teachers focused on the need for
students to learn the procedure for subtraction with regrouping (p. 2):

Whereas there is a number like 21 – 9, they would need to know that you
cannot subtract 9 from 1, then in turn you have to borrow a 10 from the
tens space, and when you borrow that 1, it equals 10, you cross out the 2
that you had, you turn it into a 10, you now have 11 – 9, you do that
subtraction problem then you have the 1 left and you bring it down.

Some teachers in both the United States and China saw the knowledge to be mas-
tered as procedural, though the proportion who held this view was considerably higher in
the United States. Many teachers in both countries believed students needed a concep-
tual understanding, but within this group there were considerable differences. Some
teachers wanted children to think through what they were doing, while others wanted
them to understand core mathematical concepts. The difference can be seen in the two
explanations below.

They have to understand what the number 64 means. . . . I would show
that the number 64, and the number 5 tens and 14 ones, equal the 64. I
would try to draw the comparison between that because when you are
doing regrouping it is not so much knowing the facts, it is the regrouping
part that has to be understood. The regrouping right from the beginning.

This explanation is more conceptual than the first and helps students think more
deeply about the subtraction problem. But it does not make clear to students the more
fundamental concept of the place value system that allows the subtraction problems to
be connected to other areas of mathematics. In the place value system, numbers are
“composed” of tens. Students already have been taught to compose tens as 10 ones,
and hundreds as 10 tens. A Chinese teacher explains as follows (p. 11):

What is the rate for composing a higher value unit? The answer is simple:
10. Ask students how many ones there are in a 10, or ask them what the
rate for composing a higher value unit is, their answers will be the same:
10. However, the effect of the two questions on their learning is not the
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same. When you remind students that 1 ten equals 10 ones, you tell them
the fact that is used in the procedure. And, this somehow confines them to
the fact. When you require them to think about the rate for composing a
higher value unit, you lead them to a theory that explains the fact as well
as the procedure. Such an understanding is more powerful than a specific
fact. It can be applied to more situations. Once they realize that the rate of
composing a higher value unit, 10 is the reason why we decompose a ten
into 10 ones, they will apply it to other situations. You don’t need to
remind them again that 1 hundred equals 10 tens when in the future they
learn subtraction with three-digit numbers. They will be able to figure it
out on their own.

Emphasizing core concepts does not imply less of an emphasis on mastery of pro-
cedures or algorithms. Rather, it suggests that procedural knowledge and skills be orga-
nized around core concepts. Ma describes those Chinese teachers who emphasize core
concepts as seeing the knowledge in “packages” in which the concepts and skills are
related. While the packages differed somewhat from teacher to teacher, the knowledge
“pieces” to be included were the same. She illustrates a knowledge package for sub-
traction with regrouping, which is reproduced below (p. 19).

The two shaded elements in the knowledge package are considered critical. “Addi-
tion and subtraction within 20” is seen as the ability that anchors more complex problem
solving with larger numbers. That ability is viewed as both conceptual and procedural.
“Composing and decomposing a higher value unit” is the core concept that ties this set
of problems to the mathematics students have done in the past and to all other areas of
mathematics they will learn in the future.

Subtraction
with regrouping of large

numbers

The composition of

numbers within 100

Subtractions with regrouping of

numbers between 20 and 100

Subtraction without

regrouping

The rate of composing

a higher value unit

Addition and subtraction

within 20

Addition without carrying

Composing and decomposing

a higher value unit

Addition and subtraction

within 10
The composition of 10

Addition and subtraction

as inverse operations

SOURCE:  Ma (1999).  Illustration reprinted with permission of Lawrence Erlbaum Associates.
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that support core learning values. Learning is influenced in fundamental
ways by the context in which it takes place. Every community, including
classrooms and schools, operates with a set of norms, a culture—explicit or
implicit—that influences interactions among individuals. This culture, in turn,
mediates learning. The principles of How People Learn have important im-
plications for classroom culture. Consider the finding that new learning builds
on existing conceptions, for example. If classroom norms encourage and
reward students only for being “right,” we would expect students to hesitate
when asked to reveal their unschooled thinking. And yet revealing precon-
ceptions and changing ideas in the course of instruction is a critical compo-
nent of effective learning and responsive teaching. A focus on student think-
ing requires classroom norms that encourage the expression of ideas (tentative
and certain, partially and fully formed), as well as risk taking. It requires that
mistakes be viewed not as revelations of inadequacy, but as helpful contri-
butions in the search for understanding.28

Similarly, effective approaches to teaching metacognitive strategies rely
on initial teacher modeling of the monitoring process, with a gradual shift to
students. Through asking questions of other students, skills at monitoring
understanding are honed, and through answering the questions of fellow
students, understanding of what one has communicated effectively is strength-
ened. To those ends, classroom norms that encourage questioning and al-
low students to try the role of the questioner (sometimes reserved for teach-
ers) are important.

While the chapters in this volume make few direct references to learn-
ing communities, they are filled with descriptions of interactions revealing
classroom cultures that support learning with understanding. In these class-
rooms, students are encouraged to question; there is much discussion among
students who work to solve problems in groups. Teachers ask many probing
questions, and incorrect or naïve answers to questions are explored with
interest, as are different strategies for analyzing a problem and reaching a
solution.

PUTTING THE PRINCIPLES TO WORK IN THE
CLASSROOM

Although the key findings from the research literature reviewed above
have clear implications for practice, they are not at a level of specificity that
would allow them to be immediately useful to teachers. While teachers may
fully grasp the importance of working with students’ prior conceptions, they
need to know the typical conceptions of students with respect to the topic
about to be taught. For example, it may help science teachers to know that
students harbor misconceptions that can be problematic, but those teachers
will be in a much better position to teach a unit on light if they know
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specifically what misconceptions students typically exhibit when learning
about light.

Moreover, while teachers may be fully convinced that knowledge should
be organized around important concepts, the concepts that help organize
their particular topic may not be at all clear. History teachers may know that
they are to teach certain eras, for example, but they often have little support
in identifying core concepts that will allow students to understand the era
more deeply than would be required to reproduce a set of facts. To make
this observation is in no way to fault teachers. Indeed, as the group involved
in this project engaged in the discussion, drafting, and review of various
chapters of this volume, it became clear that the relevant core concepts in
specific areas are not always obvious, transparent, or uncontested.

Finally, approaches to supporting metacognition can be quite difficult to
carry out in classroom contexts. Some approaches to instruction reduce
metacognition to its simplest form, such as making note of the subtitles in a
text and what they signal about what is to come, or rereading for meaning.
The more challenging tasks of metacognition are difficult to reduce to an
instructional recipe: to help students develop the habits of mind to reflect
spontaneously on their own thinking and problem solving, to encourage
them to activate relevant background knowledge and monitor their under-
standing, and to support them in trying the lens through which those in a
particular discipline view the world. The teacher–student interactions de-
scribed in the chapters of this volume and the discipline-specific examples
of supporting students in monitoring their thinking give texture to the in-
structional challenge that a list of metacognitive strategies could not.

INTENT AND ORGANIZATION OF THIS VOLUME
In the preface, we note that this volume is intended to take the work of

How People Learn a next step in specificity: to provide examples of how its
principles and findings might be incorporated in the teaching of a set of
topics that frequently appear in the K–12 curriculum. The goal is to provide
for teachers what we have argued above is critical to effective learning—the
application of concepts (about learning) in enough different, concrete con-
texts to give them deeper meaning.

To this end, we invited contributions from a variety of researchers with
extensive experience in teaching or partnering with teachers, whose work
incorporates the ideas highlighted in How People Learn. The chapter authors
were given leeway in the extent to which the three learning principles and
the four classroom characteristics described above were treated explicitly or
implicitly. Most of the authors chose to emphasize the three learning prin-
ciples explicitly as they described their lessons and findings. The four design
characteristics of the How People Learn framework (Figure 1-1) are implicitly
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represented in the activities sketched in each of the chapters but often not
discussed explicitly. Interested readers can map these discussions to the
How People Learn framework if they desire.

The chapters that follow explore the application of core learning prin-
ciples in three content areas and at three different grade levels. The text is
organized into parts by discipline, and each part begins with a chapter that
considers the learning principles in the context of the discipline generally.
The chapters that follow then explore particular topics. While we began
with a common description of our goal, we had no common model from
which to work. One can point to excellent research papers on principles of
learning, but the chapters in this volume are far more focused on teaching
a particular topic. There are also examples of excellent curricula, but the
goal of these chapters is to give far more attention to the principles of
learning and their incorporation into teaching than is typical of curriculum
materials. Thus the authors were charting new territory as they undertook
this task, and each found a somewhat different path. As a result, the charac-
ter of each of the three sections (history, mathematics, and science) differs
considerably.

The history part contains three chapters (2 through 4). The first of these
treats the principles of learning as they apply to the discipline of history in
impressive depth. Elementary and middle school history are treated together
at length in Chapter 3, a decision that permits the authors to demonstrate
progression in the sophistication with which the same concepts can be dis-
cussed at different grade levels. Chapter 4 on high school history also fo-
cuses on the treatment of particular concepts that fall under the general
topic of exploration and discovery. Because there is no agreed-upon se-
quence of topics in history during the K–12 years, using a single broad topic
allows for a clearer focus on the nature of the investigations in which stu-
dents might engage at different grade levels.

The mathematics part consists of four chapters. Chapter 5 presents an
introduction to the principles as they apply to mathematics generally. The
three chapters that follow treat important topics at the three different grade
levels: whole number in elementary school (Chapter 6), rational number in
middle school (Chapter 7), and functions in high school (Chapter 8). These
three topics are routinely covered in K–12 curricula in this sequence and
represent the major conceptual shifts required of students in mathematics.

Following the introductory Chapter 9, the science part treats three very
different topics: light and shadow at the elementary school level (Chapter
10), gravity at the middle school level (Chapter 11), and genetics and evolu-
tion at the high school level (Chapter 12). The sequence of K–12 science
topics in the United States is far less predictable than that of mathematics.
The topics in this part of the volume were chosen at the three grade levels
for the opportunities they provide to explore the learning principles of inter-
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est, rather than for their common representation in a standard curricular
sequence. Light as a topic might just as well appear in middle or high school
as in elementary school, for example, and physics is generally taught either
in middle school or high school.

The reader will find that the chapters in this volume differ a great deal
from one to the next. In inviting contributions, we drew on the expertise
and talents of individuals whose work has differed not only in topic, but in
the aspects of learning investigated most deeply. For example, the introduc-
tory chapter in the history part (Chapter 2) gives more detailed treatment of
the principles as they relate to the discipline of history than do the introduc-
tory chapters in the other two disciplines. This treatment reflects the re-
search program undertaken by Peter J. Lee and his colleagues, which has
systematically explored student conceptions about history and its core con-
cepts. Annemarie Sullivan Palincsar, one of the authors of the elementary
science chapter, has done extensive work on metacognition, and the chap-
ter by Magnusson and Palincsar (Chapter 10) is particularly strong in its
emphasis on supporting the development of metacognitive skills in students.

Mathematics chapter authors Sharon Griffin, Joan Moss, and Mindy
Kalchman all worked closely with Robbie Case, whose untimely death pre-
vented his intended participation in this volume. Case and his colleagues did
extensive research on central conceptual structures in mathematics, making
the treatment of core conceptual understandings a strength of these chap-
ters. Chapters authored by teachers (Chapter 4 by Robert B. Bain and Chap-
ter 11 by James Minstrell and Pamela Kraus) are particularly strong in the
classroom experience they bring to student–teacher interactions and the fa-
miliarity with the challenges of teaching they communicate. And the chap-
ters written by authors who have done extensive work on curriculum devel-
opment (Chapter 5 by Karen C. Fuson, Mindy Kalchman, and John D.
Bransford, Chapter 6 by Sharon Griffin, and Chapter 12 by James Stewart,
Jennifer L. Cartier, and Cynthia M. Passmore) exhibit strengths in drawing
connections among concepts across a topic area. The work of Rosalyn Ashby,
Peter J. Lee, and Denis Shemilt in Chapter 3 looks at the development of the
concepts of a discipline (in this case history) over the span of school years in
more depth than does any other chapter.

These differences we take to be a varied set of strengths. We did not
attempt to impose uniformity across chapters, since we believed that the
authors could make their greatest individual contributions by emphasizing
their specific areas of expertise. For this reason, we urge readers to cross the
disciplines and take lessons from one that might be applied to others.

The major focus of the volume is student learning. It is clear that suc-
cessful and sustainable changes in educational practice also require learning
by others, including teachers, principals, superintendents, parents, and com-
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munity members. For the present volume, however, student learning is the
focus, and issues of adult learning are left for others to take up.

The willingness of the chapter authors to accept this task represents an
outstanding contribution to the field. First, all the authors devoted consider-
able time to this effort—more than any of them had anticipated initially.
Second, they did so knowing that some readers will disagree with virtually
every teaching decision discussed in these chapters. But by making their
thinking visible and inviting discussion, they are helping the field progress
as a whole. The examples discussed in this volume are not offered as “the”
way to teach, but as approaches to instruction that in some important re-
spects are designed to incorporate the principles of learning highlighted in
How People Learn and that can serve as valuable examples for further dis-
cussion.

In 1960, Nobel laureate Richard Feynman, who was well known as an
extraordinary teacher, delivered a series of lectures in introductory physics
that were recorded and preserved. Feynman’s focus was on the fundamental
principles of physics, not the fundamental principles of learning. But his
lessons apply nonetheless. He emphasized how little the fundamental prin-
ciples of physics “as we now understand them” tell us about the complexity
of the world despite the enormous importance of the insights they offer.
Feynman offered an effective analogy for the relationship between under-
standing general principles identified through scientific efforts and under-
standing the far more complex set of behaviors for which those principles
provide only a broad set of constraints:29

We can imagine that this complicated array of moving things which consti-
tutes “the world” is something like a great chess game being played by the
gods, and we are observers of the game. We do not know what the rules of
the game are; all we are allowed to do is to watch the playing. Of course,
if we watch long enough, we may eventually catch on to a few of the rules.
The rules of the game are what we mean by fundamental physics. Even if
we knew every rule, however, we might not be able to understand why a
particular move is made in the game, merely because it is too complicated
and our minds are limited. If you play chess you must know that it is easy
to learn all the rules, and yet it is often very hard to select the best move or
to understand why a player moves as he does. . . . Aside from not knowing
all of the rules, what we really can explain in terms of those rules is very
limited, because almost all situations are so enormously complicated that
we cannot follow the plays of the game using the rules, much less tell what
is going to happen next. (p. 24)

The individual chapters in this volume might be viewed as presentations
of the strategies taken by individuals (or teams) who understand the rules of
the teaching and learning “game” as we now understand them. Feynman’s
metaphor is helpful in two respects. First, what each chapter offers goes well
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beyond the science of learning and relies on creativity in strategy develop-
ment. And yet what we know from research thus far is critical in defining the
constraints on strategy development. Second, what we expect to learn from
a well-played game (in this case, what we expect to learn from well-concep-
tualized instruction) is not how to reproduce it. Rather, we look for insights
about playing/teaching well that can be brought to one’s own game. Even if
we could replicate every move, this would be of little help. In an actual
game, the best move must be identified in response to another party’s move.
In just such a fashion, a teacher’s “game” must respond to the rather unpre-
dictable “moves” of the students in the classroom whose learning is the
target.

This, then, is not a “how to” book, but a discussion of strategies that
incorporate the rules of the game as we currently understand them. The
science of learning is a young, emerging one. We expect our understanding
to evolve as we design new learning opportunities and observe the out-
comes, as we study learning among children in different contexts and from
different backgrounds, and as emerging research techniques and opportuni-
ties provide new insights. These chapters, then, might best be viewed as
part of a conversation begun some years ago with the first How People Learn
volume. By clarifying ideas through a set of rich examples, we hope to
encourage the continuation of a productive dialogue well into the future.
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2
Putting Principles into Practice:

Understanding History
Peter J. Lee

A major principle emerging from the work on How People Learn is that
students do not come to their classrooms empty-handed. They bring with
them ideas based on their own experience of how the world works and how
people are likely to behave. Such ideas can be helpful to history teachers,
but they can also create problems because ideas that work well in the every-
day world are not always applicable to the study of history. The very fact
that we are dealing with the past makes it easy for misconceptions to arise
(soldiers and farmers are not the same now as in the seventeenth century,
and “liberty” did not have the same meaning for people then as it does
today). But problems with everyday ideas can go deeper. Students also have
ideas about how we know about the past. If they believe, for example, that
we can know nothing unless we were there to see it, they will have difficulty
seeing how history is possible at all. They will think that because we cannot
go back in time and see what happened, historians must just be guessing or,
worse, making it up. If, as teachers, we do not know what ideas our students
are working with, we cannot address such misconceptions. Even when we
think we are making a difference, students may simply be assimilating what
we say into their existing preconceptions.

Another principle of How People Learn is that students need a firm foun-
dation of factual knowledge ordered around the key concepts of the disci-
pline. Some of the key concepts for the study of history are concerned with
the content or substance of history—with the way people and societies work.
These substantive concepts include, for example, political concepts such as
state, government, and power, and economic concepts such as trade, wealth,
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and tax. But understanding history also involves concepts of a different
kind, such as evidence, cause, and change.

Historians talk and write about things that go on in the world. Their
histories are full of pioneers, politicians, and preachers, or of battles, bu-
reaucracies, and banks. They give their readers explanations, they use evi-
dence, and they write accounts, but their books are not about the idea of
explanation, or the notion of evidence, or what kind of thing a historical
account is. Rather, they use their own (usually sophisticated) understandings
of evidence or explanation to write books about Columbus or the Maya or
the American Revolution. Nevertheless, concepts such as evidence lie at the
heart of history as a discipline. They shape our understanding of what it is to
“do” history and allow us to organize our content knowledge (see Box 2-1).

There is no convenient agreed-upon term for this knowledge of the
discipline. It is sometimes called “metahistorical”—literally, “beyond history”—
because the knowledge involved is not part of what historians study, but
knowledge of the kind of study in which they are involved. Another term
sometimes used is “second-order” knowledge, denoting a layer of knowl-
edge that lies behind the production of the actual content or substance of
history. Finally, because the knowledge involved is built into the discipline
of history, rather than what historians find out, another term used is “disci-
plinary” knowledge. In this chapter, all three terms are used interchangeably
to refer to ideas about “doing history.” It is important to stress that the intent
here is not to suggest that students in school will be doing history at the
same level or even in the same way as historians. The point is rather that
students bring to school tacit ideas of what history is, and that we must
address these ideas if we are to help them make progress in understanding
what teachers and historians say about the past.

Once we start to include ideas of this kind among the key concepts of
the discipline, we can see that they also provide a basis for enabling stu-
dents to think about their own learning. We thereby arrive at the third prin-
ciple emphasized in How People Learn—the importance of metacognitive
strategies (see Chapter 1). Monitoring one’s own learning in history means,
among other things, knowing what questions to ask of sources and why
caution is required in understanding people of the past. It means knowing
what to look for in evaluating a historical account of the past, which in turn
requires understanding that historians’ accounts are related to questions and
themes. In short, it means having some sense of what counts as “doing”
history.

In Box 2-1, for example, Angela is implicitly asking whether her group
is making the right moves in its attempt to explain why World War II started.
She is using her knowledge of what counts as a good explanation in history
to question how well the group really understands why the war began. In
this way, metahistorical (disciplinary) concepts allow students to begin to
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monitor their understanding of particular events in the past. As metacognitive
strategies of this kind become explicit, they play an increasingly important
role in learning.

This introductory chapter first explores students’ preconceptions about
history, pointing out some key concepts involved in making sense of the
discipline. It considers students’ ideas of time and change, of how we know
about the past, of how we explain historical events and processes, and of
what historical accounts are, and why they so often differ (second-order
ideas). The discussion then turns to students’ preconceptions of how politi-
cal and economic activities work (substantive concepts). Of course, stu-
dents’ ideas change as their experience grows and they encounter new prob-
lems; this means we need to consider how we might expect students’ ideas
to develop as we teach them. Although there is a growing volume of re-
search on students’ ideas about history, one that is expanding particularly
rapidly in the United States, it is important to remember that there has been
much less work of this kind in history than in science or mathematics.1

Research conducted in the United States and Europe over the past three
decades appears to suggest that some of the key concepts of history (the
discipline) are counterintuitive, and that some of the working assumptions
about history used by students are much more powerful than others and
may be developed in a systematic way over the years spent studying history
in schools. The chapter ends with an exposition of how teachers can present
history to their students in a way that works to develop historical under-
standing.

HISTORY AND EVERYDAY IDEAS
What do we mean by saying that history is “counterintuitive”? The “in-

tuitions” at stake here are the everyday ideas students bring to history les-
sons. They are the ideas that students use to make sense of everyday life,
and on the whole they work very well for that purpose. But people doing
history are looking at things differently from the way we handle them for
practical daily living.

Take the example of telling the truth. If a youngster gets home late and
her mother asks where she has been, the child has a choice between “telling
the truth” and “telling a lie.” From the child’s point of view, what has hap-
pened is a fixed, given past, which she knows very well; the only issue is
whether she tells it the way it was. Often children learn what counts as
“telling the truth” in just this kind of situation, where the known past func-
tions as a touchstone; it is as if what one says can be held up against the past
to see if it measures up. This idea works fine in some everyday situations,
but in history the past is not given, and we cannot hold what we are saying
up against the real past to see whether it matches. The inferential discipline
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The three (British) seventh-grade students in the excerpt below are discussing
why World War II started and whether it could have been avoided without thus far
having studied this at school. All they have to work with from school history is their
knowledge of World War I, along with anything they know from outside school. To
understand what is going on here, we need to distinguish between two different
kinds of knowledge about history: knowledge of what happened, of the content of
history, and knowledge about the discipline of history itself.

Angela I think Hitler was a madman, and I think that’s what . . .

Susan He was . . . a complete nutter, he should have been put
in a . . . um . . .

Angela He wanted a super-race of blond, blue-eyed people to
rule the world.

Susan Yeah—that followed him. . . .

Angela I mean, but he was a short, fat, dark-haired sort of
person.

Susan  . . . little person.

Katie Could it be avoided? I don’t think it could have.

Angela No.

Katie If Hitler hadn’t started . . . I mean I can’t blame it on
him, but if he hadn’t started that and provoked . . . you
know . . .  us . . . if, to say, you know, that’s wrong . . .

Susan It would have been [avoided]. . . .

Katie Yeah, it would have been, but it wasn’t.

Susan Yeah, if you think about it, every war could’ve been
avoided.

Angela I reckon if Hitler hadn’t come on the scene that would
never have happened.

Katie Oh yeah, yes, yes.

Angela There must’ve been other underlying things, like
World War I we found out there was lots of underlying
causes, not only . . . Franz Ferdinand being shot. . . .

Susan Yeah.

Angela  . . . but loads of other stuff as well.

Katie Oh yeah, I don’t think he was so far . . .

BOX 2-1 Understanding the Past and Understanding the Discipline
of History
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Angela Yeah, there must’ve been a few other main
currents. . . .

Katie But, like that Franz Ferdinand, he didn’t get,
that was the main starting point for it all, that
really blew it up. . . .

Angela But I don’t know whether . . . because we don’t
know any underlying causes. If Hitler hadn’t
been there, I don’t know whether it could’ve
been avoided or not.

Susan Yeah but most wars can be avoided anyway, I
mean if you think about it we could’ve avoided
the First World War and any war . . .

Katie  . . .  by discussing it.

Susan Exactly.

Katie Yeah, you can avoid it, but I don’t think . . .

Angela Yeah but not everybody’s willing to discuss. . . .

 SOURCE: Lee and Ashby (1984).

In discussing World War II, the three girls try to use what they have
learned at school about World War I. Their knowledge points in two dif-
ferent directions. What they know about the events suggests to them
that “most wars can be avoided” if people discuss their problems, so
Susan and probably Katie think that World War II could have been avoided
by reasonable negotiation. They have learned a “lesson” from their study
of one passage of the past and, sensibly enough, try to apply it to an-
other. Unfortunately the “lesson” does not hold. Angela has learned a
different kind of knowledge from her earlier study of World War I, and it
leads her to treat her friends’ lesson with caution. She has learned that a
historical explanation is likely to require more than a single immediate
cause, and that “underlying causes” may also be at work. So even if
there had been no Hitler, we need to know more about international rela-
tions between the wars before we can say that World War II could have
been avoided. Angela’s knowledge of how explanations are given in the
discipline of history provides her with a more powerful way of thinking
about why things happen. She knows what to look for.
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of history has evolved precisely because, beyond the reach of living memory,
the real past cannot play any direct role in our accounts of it. History de-
pends on the interrogation of sources of evidence, which do not of them-
selves provide an unproblematic picture of the past.

Everyday ideas about a past that is given can make it difficult for stu-
dents to understand basic features of doing history. For example, how is it
possible for historians to give differing accounts of the same piece of his-
tory? (See Box 2-2.) Students’ common sense tells them that the historians
must be getting things wrong somewhere.

Differences in the Power of Ideas

The everyday idea of telling the truth is often closely linked to a very
recent past in which people remember what they did or saw. Some students
behave as if they believe the past is somehow just there, and it has never
really occurred to them to wonder how we know about it. In Box 2-2, Kirsty,
like many other fifth and sixth graders, does not even raise the question of
how we could know about the past.

Other youngsters are only too well aware that this question may be
problematic. Allison, a fifth grader, states the difficulty quite clearly: “You
cannot really decide unless you were there.” If one thinks like this, history
becomes impossible. If knowing something depends on having seen it (or
better still, having done it), one can never say anything worthwhile about
most of the past. Many students stop here, wondering what the point of
history is. However, while some working assumptions make history appear
to students to be a futile exercise, others allow its study to go forward.

Samantha (fifth grade):

Why are there different dates?
No one knows, because no one was around then, so they
both can be wrong.

How could you decide when the Empire ended?
If you found an old diary or something it might help.

Does it matter if there are two different dates?
Yes, because you can get mixed up and confused.

We can see here both the problem and initial steps toward a solution.
Samantha appears to agree with Allison when she writes, “No one knows,
because no one was around then.” But Samantha, unlike Allison, sees the
beginnings of a way out for historians. Perhaps someone told it the way it
was and wrote it down, and we could find it: “If you found an old diary or
something it might help.” This view remains very limiting because it still sees
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the past as fixed, but it does make history possible. If we have true reports,
historians are in business.

Of course, many students see that truthful testimony may not be easy to
come by. They are well aware that people have reasons for saying what they
say and the way they say it. As Brian (eighth grade) remarks, “I don’t think
we could find out definitely [when the Empire ended] because there are
only biased stories left.” Students who decide that we cannot rely on reports
because they are biased or give only opinions are almost back to square
one. If history is possible only when people (eyewitnesses or agents) tell us
truthfully what happened, its study once more comes to a stop.

It is only when students understand that historians can ask questions
about historical sources that those sources were not designed to answer, and
that much of the evidence used by historians was not intended to report
anything, that they are freed from dependence on truthful testimony. Much
of what holds interest for historians (such as, What explains American eco-
nomic supremacy in the postwar years? Did the changing role of women in
the second half of the twentieth century strengthen or weaken American
social cohesion?) could not have been “eyewitnessed” by anyone, not even
by us if we could return by time machine. Once students begin to operate
with a concept of evidence as something inferential and see eyewitnesses
not as handing down history but as providing evidence, history can resume
once again; it becomes an intelligible, even a powerful, way of thinking
about the past.

The Progression of Ideas

Insofar as some of the ideas students hold are more powerful than oth-
ers, we may talk about progression in the way students understand the
discipline of history. For example, changes in students’ ideas about our
access to the past allow us to discern a pattern of progression of ideas about
evidence. Working from less to more powerful ideas, we find a given past
with no questions arising about how we can know; a notion of testimony,
with questions about how truthful a report may be; and a concept of evi-
dence, whereby questions can be asked that no one was intending to an-
swer.2 (Medieval garbage dumps were not constructed to fool historians.)
Once we are able to think in terms of a progression of ideas in history, we
can see how students’ understandings can gradually be extended. In some
cases we can accomplish this by enabling students to discover how prior
conceptions break down in the face of historical problems. However work-
able the idea of a given past may be in everyday life, for instance, it is a
misconception in history. In other cases we can build more directly on exist-
ing ideas. Thus testimony is important to historians, even if it must be used
as evidence rather than simply being accepted or rejected. The goal is to
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In research by Project CHATA (Concepts of History and Teaching Ap-
proaches) into students’ understanding of how there can be different his-
torical accounts of the same events, 320 British students in grades 2, 5,
6, and 8 were given three pairs of stories and asked how it is possible for
there to be two different history stories about the same thing. Each pair of
stories was about a different topic, and the two stories making up any
particular pair were the same length and ran side by side down a single
page. Specially drawn cartoons illustrated key themes and steps in the
story. Younger children tended to say that the two stories in each pair
were “the same” because they were “about the same thing” but were
just “told differently.” Many of the students considered that the pairs of
stories were different because no one has enough knowledge. Older stu-
dents tended to emphasize the role of the author, some relying on rela-
tively simple ideas of lies and bias as distorting stories, and others taking
a more sophisticated view about the inevitability and legitimacy of a point
of view. About 20 percent of the older students pointed out that stories
answer different questions and fit different parameters (not their word).
They did not see historical accounts as copies of the past and thought it
natural that such accounts should differ.

 One pair of stories had to do with the end of the Roman Empire,
each claiming it ended at a different date. The first story, dealing mainly
with the barbarian incursions, ended with the fall of the Empire in the
West in 476. The second, which concentrated on the Empire’s adminis-
trative problems, took the story up to the fall of Constantinople in 1453.
Below are two (written) responses to the task.

Kirsty (fifth grade):
Why are there different dates?

One of the stories must be wrong.
How could you decide when the Empire ended?

See what books or encyclopedias say.
Does it matter if there are two different dates?

Yes, because if someone reads it and it has the wrong
date in it then they will be wrong and might go round
telling people.*

BOX 2-2 Two Different Ideas About Historical Accounts
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Kirsty’s view of history is that if there is more than one account,
one must be wrong. The past is given (in books), and she is sure that
if historians read the same books and are honest, they will come up
with the same story “because they will do the same things and they
are not lying.” Everyday ideas are apparent here, but they do not help
Kirsty solve the problem she faces. We can see how different things
look for someone who has a more sophisticated understanding of what
a historical account is if we read Lara’s response to the same problem.

Lara (eighth grade):
Why are there different dates?

Because there is no definite way of telling when it
ended. Some think it is when its city was captured or
when it was first invaded or some other time.

How could you decide when the Empire ended?
By setting a fixed thing what happened for example
when its capitals were taken, or when it was totally
annihilated or something and then finding the date.

Could there be other possible times when the Empire
ended?

Yes, because it depends on what you think ended it,
whether it was the taking of Rome or Constantinople
or when it was first invaded or some other time.

Where Kirsty sees the past as given, Lara understands that it has
to be reconstructed in that statements about the end of the Roman
Empire are judgments about the past, not just descriptions of events
in it. This means that a historical account is not fixed by the past, but
something that historians must work at, deciding on a theme and
timescale. Thus the problem of the date of the end of the Roman
Empire is not a matter of finding an already given right answer but of
deciding what, within the parameters of a particular account, counts
as the end. Knowing when the Roman Empire ended is not like know-
ing when Columbus reached America.

*All responses in this chapter not otherwise attributed are unpublished
examples of responses from Project CHATA. For published CHATA work, see,
for example, Lee and Ashby (2000).
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help students develop more powerful ideas that make the study of history
an intelligible task, even in the face of disagreement and uncertainty, whether
encountered in school or in the multiple histories at large in the wider world.

Grounds for Caution

Some caution is needed here. The notion of getting students to under-
stand the discipline of history may appear to make life absurdly difficult for
adolescents, let alone fourth graders. It is perhaps appropriate, therefore, to
clarify at this juncture what we are not saying. We are not saying that teach-
ing history is about training mini-historians. Second-order, disciplinary un-
derstandings of the kind we are talking about are not all-or-nothing under-
standings. Historians no doubt learned some science at school or college,
but their understanding of science is not likely to be in the same league as
that of a professional physicist. This does not mean their understanding is
equivalent to that of a 7-year-old, nor does it mean such understanding is
useless. Developing students’ understanding of history is worthwhile with-
out implying any grandiose claims.

It is also important to recognize that learning to understand the disci-
pline does not replace the goal of understanding particular periods of the
past. The substantive history (the “content” of the curriculum) that students
are required to study is important, and so there will always be arguments
about what is to be included, what should be omitted, and whether there is
too much to cover. Regardless of what must be taught, however, under-
standing the kind of knowledge history is, its evidentially based facts and its
stories and explanations, is as much a part of what it means to know some
history as is knowing about the chosen periods of study, whatever these
may be. Better understanding of key second-order ideas can help students
make sense of any new topics they encounter. Although the quantity of
research evidence available on the transfer of disciplinary ideas from one
topic to another is relatively small, an evaluation of the Schools Council
History Project in the United Kingdom suggests that teaching for transfer can
be successful.3  In light of the principles of How People Learn, this should not
be entirely unexpected.

The point of learning history is that students can make sense of the past,
and doing so means knowing some historical content. But understanding
the discipline allows more serious engagement with the substantive history
students study and enables them to do things with their historical knowl-
edge. This is why such an understanding is sometimes described in terms of
skills. However, the term is misleading. Skills are commonly single-track
activities, such as riding a bicycle, which may be learned and improved
through practice. The understandings at stake in history are complex and
demand reflection. Students are unlikely to acquire second-order under-
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standings by practice alone; they need to think about what they are doing
and the extent to which they understand it. This kind of metacognitive ap-
proach is essential for learning history effectively. Building ideas that can be
used effectively is a task that requires continuous monitoring and thinking
on the part of both teacher and student.

The Ideas We Need to Address

Historians give temporal order to the past, explain why events and pro-
cesses took place as they did, and write accounts of the past; they base
everything they do on the evidence available. In this section we examine
some key second-order concepts that give shape to the discipline of history:
time, change, empathy (roughly, understanding people in the past), and
cause, as well as evidence and accounts, mentioned earlier in passing. With
any such list of second-order concepts, it is important to remember that we
are using labels that refer to an adult concept to cover a whole range of
understandings. When we talk about a concept such as evidence, as we
have already seen, some of these understandings will fall far short of the
kind of ideas we eventually want our students to grasp. For many students,
what we present to them as evidence will be thought of as information or
testimony. Thus if we say of a particular lesson that one of its purposes is “to
teach students about evidence,” we are thinking of where we want the
students to arrive, not how they may actually be operating. The same con-
siderations apply to anything we say about other ideas.

Time

The concepts of time and change are clearly central to history. Time in
history is measured through a conventional system of dates, and the impor-
tance of dates is that they allow students to order past events and processes
in terms of sequence and duration. The latter is particularly important if
students are to understand that processes in history (for example, urbaniza-
tion or shifts in the attitudes of Europeans and Native Americans toward
each other) may be long-drawn-out and cannot be treated as if they were
events taking place at a particular moment.

Teachers at the elementary level often say their students have no con-
cept of time. This may mean that children foreshorten the passage of time in
waiting for some anticipated event or that they cannot “work” clock time
(perhaps their counting skills are defective, or they do not understand the
analogue symbolism of a clock face). It seldom means that even very young
children have failed to internalize their everyday basic temporal structures,
such as day and night or breakfast, lunch, and dinner, let alone patterns of
work and play. But they may have trouble estimating the long duration of
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passages of the past, and once again the attempt to transfer common-sense
ideas about time from everyday life to history may pose problems.

For example, when English first-grade students were asked to sort paired
pictures of people and objects into piles labeled “from long ago” and “from
now,” a significant majority were influenced by such factors as the physical
condition of the objects portrayed and the state of the pictures. When a
picture of a 7-year-old in a Victorian Little Lord Fauntleroy suit was paired
with a modern photograph of an old man, most students said the Victorian
picture was “from now.” A picture of a beat-up and dirty modern car would
be placed on the “from long ago” pile when paired with a photograph of a
bright and shiny museum stagecoach. The pairing of clean and crisp pic-
tures with bent, faded, and dog-eared pictures proved to be almost as dis-
tracting. It is clear that for these first graders, the historical distinction be-
tween long ago and now had been assimilated into the common-sense
distinctions of old versus young and old versus new.4

With time, as with other ideas, history can be counterintuitive. Several
features of history show the limits of a “clock time” understanding. Even
apparently conventional terms are not always what they appear to be. Noto-
riously, a century in history is not necessarily a hundred years when used as
an adjective (as in “eighteenth-century music”). The nineteenth century may
be held to have closed with the start of the Great War of 1914–1918 or with
the entry of America into the war and the beginning of the “American Cen-
tury.” The reason there are alternative possibilities and even disputes about
such matters is obvious enough: historians clump and partition segments of
time not as bits of time but as events, processes, and states of affairs that
appear to belong together from certain perspectives. Thus the eighteenth
century may be shorter musically than it is architecturally. Start and end
dates are debatable, such that it makes no sense to argue over the beginning
and end of any conventionally designated century. Much the same could be
said about decades. When, for example, did “the 1960s” begin?

Of course, none of this means the conventional time markers and their
normal mathematical relationships are unimportant in history or that they
do not need to be understood, only that they must be supplemented by
other ideas. The problem with centuries or decades is that they are linked
to ideas of period in history (see Box 2-3). Knowing historical periods and
being able to use them depends on knowing some of the history from
which they are constructed. It means knowing the themes historians have
chosen as a basis for thinking about the past. It may also mean knowing
how people saw themselves, which presupposes that students recognize
the distance of the past from our thinking as well as our time. For this
reason, as well as the fact that it requires a good deal of knowledge, a sense
of period is a difficult achievement for students, one that tends to come late
in their study of history.5
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Change

Events are not in themselves changes, although this is exactly how many
students see things. For children, the everyday model of change can often
be simple. One minute “nothing” is happening, and then something does
happen (often, someone does something). So there has been a change, and
the change is that an event has taken place. It is a natural step to think of the
event as a change.6

History tends to deal with longer scales than the moment-to-moment
scale of everyday life, and historians are unlikely to subscribe to the notion
of “nothing” happening. The idea that nothing happens is typically an ev-

Periods in history are not necessarily transparent, as this example from Sweden
indicates. The students are responding to the teacher’s question about which his-
torical period came after the Renaissance.

Student The Baroque Period.

Teacher In the fine arts, yes.

Student The Age of Greatness.

Teacher Yes, but that was in Sweden.

Student The Age of Freedom.

Teacher That came a bit later.

Student The Age of Monarchic Absolutism.

Teacher Yes, or the Age of Autocracy. What’s the period that
we’re reading about now?

Student The Age of Freedom.

Teacher In Sweden, yes.

Student The Age of Enlightenment.

Teacher Yes.

Halldén, who reports this exchange, comments, “It is tragic-comical that, in
this particular case, the concepts that are supposed to help the students grasp the
continuity of history become a problem in themselves.” He adds, “It is highly prob-
able that this is not an exceptional case.”

SOURCE: Halldén (1994).

BOX 2-3 Periods in History
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eryday-life notion, rooted in highly conventional and agreed-upon ideas
about what counts as interesting. Historians also operate with criteria of
importance that include or exclude events, but these criteria are likely to be
contested. Instead of the idea that no events occurred, historians are apt to
work with the notion of continuity. This notion presupposes two other key
ideas—state of affairs and theme. Change in history is generally to be un-
derstood in terms of changes in states of affairs; it is not equivalent to the
occurrence of events. Consider the change from a state of affairs in which a
class does not trust a teacher to one in which it does. There may be no
event that could be singled out as marking the change, just a long and
gradual process. Similarly in history, changes in population density, the
role of the automobile industry in the economy, or attitudes toward minor-
ity cultures may change without any landmark event denoting a point in
time in which the change took place. If students see changes as events, the
idea of gradual, unintended changes in situations or in the context of ac-
tions and events is not available to them. Change is likely to be regarded as
episodic, intentional (and hence rational or stupid), and able to be tele-
scoped into a small compass (see Box 2-4).

As students become aware that historians must choose themes to write
about (it is not possible to write about everything at once), they can begin to
think in terms of patterns of change. What was changing? How? Was it chang-
ing a lot or just a little? Answering such questions involves concepts such as
the direction and pace of change. One of the key understandings for stu-
dents is that changes can run in different directions both between and within
themes. Suppose the theme is subsistence and food production. For societ-
ies in Western Europe over a long period, food became more reliable, rela-
tively cheaper (compared with income), more easily obtained, and available
in a wider variety. Of course, in a parallel theme dealing with changes in the
environment, there were costs. Here once again, students’ preconceptions
can cause problems. There is some evidence from research that students
tend to think of the direction of change as automatically involving progress,
and that this tendency may be more marked in the United States than in
some other countries.7  This misconception can lead to a condescending
attitude toward the past, while also making it more difficult to grasp the
complexities of change.

Two of the most common ideas likely to be encountered among stu-
dents are the notion that everything gets better and that the past can be
viewed in terms of deficits. Kenny (fourth grade) suggests some examples of
progress:

Better cars, they’ve gone from women [now] getting the
exact same thing as men; now black people have gone from
being horrible people to being—they’re the best athletes in
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Keith Barton spent a year in two Cincinnati classrooms, observing, discussing les-
sons with the teachers, and interviewing students. In his formal interviewing he
showed pictures from different periods of American history to pairs of fourth and
fifth graders and asked them to put the pictures in order, explaining their reasons
as they did so.

 He found that students envisaged change as something linear and “generally
beneficial.” They tended to think of change as being spatially and temporally lim-
ited in scope and “conceived of history as involving a limited number of discrete
events, rather than lengthy and extensive processes.” They “thought of change as
having come about for logical reasons” and believed that people in the past de-
cided to make changes because they realized, usually in the face of some particular
event, that change would improve matters. Hence Jenny, a fourth-grade student,
explained the end of witch trials like this:

When they accused like the mayor’s wife or somebody’s wife that
they were a witch, and he said, “This has gone too far, we’ve killed
enough innocent people, I want you to let everyone go, my wife is
not a witch, and this has just gone too far,” and then, just like that,
everybody just forgot, and they didn’t accuse people of witches
anymore.

Jenny has turned a process of change into an event. Someone important made
a rational decision that everyone accepted forthwith.

SOURCES: Barton (1996), Lee and Ashby (2001).

BOX 2-4 Change as Progressive, Rational, and Limited in Time

the world, they’ve gone from bad to good—and the cars
have gone from bad to good; everything has gotten better
than before.8

The idea of progress is reinforced by the idea—a very natural one acquired
in part, no doubt, from parents and grandparents—of a deficit past. “Milk
used to come in bottles because they didn’t have cardboard.” It was deliv-
ered to people’s houses because “they didn’t have many stores back then.”
Bicycles looked different because “they hadn’t come up with the ideas yet.”9

Patterns of change also provide a context for attributing significance in
history. Significance can be attributed to changes within themes. A key idea
for students is that the same change may have differing significance within
different themes.10  The significance of change in food marketing, for ex-
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ample, may differ for a theme of changes in health and one of patterns of
working life and employment.

Empathy

One kind of explanation in history involves showing that what people
did in the past makes sense in terms of their ideas about the world. This kind
of explanation is often called empathy. Here we run into some problems.
The word “empathy” has more than one meaning, and it tends to be used
only because finding a single word that does the job better is difficult. (Other
labels are “historical understanding” and “perspective taking”; however, the
former is too broad, and the latter tends to get confused with “multiple
perspectives,” which is more a matter of the points of view from which
accounts are constructed.) The use of the word “empathy” in history educa-
tion is to some extent stipulative (that is, the word is assigned a particular
meaning, whatever other meanings it may have in the world outside history
education). To that extent it is jargon, but there is no harm in this if it helps
professionals reach a consensus on what they are talking about.

The central idea here is that people in the past did not all share our way
of looking at the world. For this reason, when writing or reading history we
must understand the ideas, beliefs, and values with which different groups
of people in the past made sense of the opportunities and constraints that
formed the context within which they lived and made decisions about what
to do. Thus empathy in the study of history is the understanding of past
institutions, social practices, or actions as making sense in light of the way
people saw things. Why, for example, would a free peasant agree to be-
come a serf in the Middle Ages? Southern (1953, pp. 109-110) explains an act
that appears almost perverse to us now by showing how it could fit into a
pattern of beliefs and values: “There was nothing abhorrent in the idea of
servitude—everything depended on its object. All men by sin have lost the
dignity of freedom and have made themselves, in varying degrees, slaves of
their passions. . . .” He quotes St. Anselm:

Is not every man born to labor as a bird to flight? . . . . So if all men labor
and serve, and the serf is a freeman of the Lord, and the freeman is a serf of
Christ, what does it matter apart from pride—either to the world or to
God—who is called a serf and who is called free?

Southern continues:

It is easy to see that from this point of view secular serfdom
had no terrors. The burdens and restrictions it imposed
were of featherweight compared with those imposed by the
radical servitude of unredeemed nature. At best, this human
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servitude was a preparatory discipline . . . at worst, it added
only one more lord . . . to an array of lordly passions under
which human nature already groaned. . . .

Southern’s explanation—and of course this is only a short excerpt, not a
full explanation even of the narrow issue of why people might choose serf-
dom—relies on the reconstruction of past beliefs and values using historical
evidence. Empathy is not a special faculty for getting into other people’s
minds, but an understanding we achieve if we entertain ideas very different
from our own. “Entertaining” ideas here denotes more an achievement than
a special sort of process. It is where we arrive when, on the basis of evi-
dence, we can say how someone might have seen things. It requires hard
thinking and use of the evidence we have in a valid way. Empathy, how-
ever, is not just having the inert knowledge that people saw things in the
way they did, but also being able to use that knowledge to make sense of
what was done. This is not a matter of having an emotional bond. In history
we must empathize with ideas we might oppose in the unlikely event we
came across exactly the same ideas in the present. If understanding people
in the past required shared feelings, history would be impossible. Under-
standing the hopes of the Pilgrims means entertaining their beliefs and val-
ues and knowing that they had those hopes. But we cannot now share the
hopes—feel them ourselves—even if we want to, because to hope for some-
thing means to see it as a possible outcome, and our hindsight allows us to
know that the outcome did not occur. Similarly, we cannot experience the
fear felt by people in Britain in 1940 that Hitler might triumph and occupy
their country. The same holds for a great deal of history.

None of this is to say that we do not want students to care about people
in the past. If they treat people in the past as less than fully human and do
not respond to those people’s hopes and fears, they have hardly begun to
understand what history is about.11  But people in the past can appear to be
strange and sometimes to do peculiar things (things we would not do) and
so it is not always easy for students to accord them respect.

Partly because students tend to think about people in the past as not
having what we have, and partly because they encounter decisions or ways
of behaving that are difficult to make sense of, they tend to write off people
in the past as not as smart as we are. (Evidence for the ideas described
below goes back nearly 30 years and appears to have survived through a
variety of changes in teaching.)12  Students are quite capable of assuming
that people in the past did not understand or do very basic things. A highly
intelligent eighth grader, puzzling out why the Saxons might have used the
ordeal of cold water to discover whether someone was guilty of a crime,
declares, “But we know that nowadays if you ain’t got air you’re dead, but
they didn’t.” An exchange between two eighth graders, this time about the
ordeal of hot water, shows a similar disposition to write off the past:13
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Sophie And what about the boiling water, the boiling
water—that could be hotter one time than
another. I know it boils at 100 degrees centi-
grade, but um . . .

Mark They wouldn’t be able to get it that high,
would they, in them times.

Another common way of dealing with the strange activities of human
beings of the past is to assimilate those activities with our own. Often this is
done in routine, even stereotypical ways. Mark, a fifth grader, explains why
European monarchs paid for overseas ventures to the New World:14  “They
were greedy and wanted gold and more land, and sometimes they wanted
jewels and different things.” This sort of explanation is almost standard for
monarchs and emperors, regardless of the period involved. Claudius in-
vaded Britain for much the same reason:15  “to get the pearls, the tin and the
gold,” or because “he wanted more land.” Of course, assimilation can be
more sophisticated than these examples, but may still leave problems unre-
solved. When, to return to our earlier example, students do not simply write
off the Saxon ordeal but instead construe it as either a “punishment” or a
“deterrent,” they often remain dissatisfied with their own explanation.

At a higher level, students begin to think carefully about the particular
situation in which people found themselves. What exactly were the circum-
stances in which they had to make decisions about what to do? This thinking
can involve careful exploration, in which a variety of elements of the situa-
tion are related to one another. But although students who think like this
make considerable efforts to understand why people in the past did what
they did, they still tend to think in terms of present ideas (see Box 2-5).

Some students, however, will recognize that people in the past not only
found themselves in different situations from those of today, but also thought
differently, as is evident in this eighth grader’s explanation of trial by or-
deal:16

I think that the Saxons used the ordeal partly because of
their belief in God. I think that the Saxons believed that as
the ordeal was the judgment of God, and because God had
power over everyone, God would heal your hand or make
you sink if you were innocent, or make you float or your
hand not heal if you were guilty. I think that the Saxons
believed that God would save you, and God was saying if
you were guilty or innocent.

The ordeal becomes intelligible as a different way of thinking about
things from our own, and our job in doing history is to understand it in past
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terms as well as ours. Occasionally, students even in the second or third
grade think like this, but given the way parents and grandparents introduce
children to the differences between the past and the present, as well as
prevailing ideas about “progress,” we are more likely to encounter assump-
tions about a deficit past. Nevertheless, with teaching that aims to develop
sensitivity to past ways of thinking, one can expect to find students making
moves such as the one Sarah (a fifth grader) makes in trying to work out
why the Helots did not rebel against their Spartan masters:

We’re given the training of freedom, right, we’re given this
ever since we grew up, and we have had freedom, in
different ways. But these people never had freedom at all,
so they can’t imagine life without being enslaves [sic] right?
They don’t know what it’s like, they’d be scared of it.17

There is an element of condescension in this view, perhaps. But what ap-
pears to her fellow students as craven weakness on the part of the Helots in
failing to rebel despite great numerical superiority, Sarah recognizes as an
intelligible position.

Cause

Not all explanations in history are concerned with understanding people’s
reasons for acting or thinking as they did. We often want to explain why
something happened that no one intended. Actions have unintended conse-
quences, or simply fail to achieve their purposes. Historians also explain
why large-scale events or processes occurred (for example, the Renaissance,
the Industrial Revolution, or American westward expansion). In such cases,
understanding what people were trying to do—their reasons for action—can
be only part of an explanation of how events turned out, and we are likely
to have to start talking in terms of causes. Students who have noticed this
sometimes take a step too far and dismiss intentions as irrelevant since “they
didn’t happen.” (No one intended World War I, so what people were trying
to do is irrelevant.) When asked whether knowledge of people’s plans is
important to historians even if the plans go wrong, a typical response of
students thinking this way is:18  “No! ’Cos they didn’t cause anything then if
they went wrong.”

Students often treat causes as special events that make new events hap-
pen in much the same way as individual people do things: causes act the
way human agents act. When one fails to do something, nothing happens;
similarly, if no causes act, nothing happens. It is as if the alternative to
something happening is not something different occurring, but a hole being
left in history.19  Students thinking like this misconceive the explanatory task,
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Even young children may sometimes give quite sophisticated explana-
tions of apparently puzzling actions in the past, but they tend to rely on
our modern ways of thinking to explain why people did as they did.

 Twenty-three second graders in three schools in England were inter-
viewed to explore how far and in what ways their ideas about history
changed as they went through school. The CHATA researchers interviewed
them twice in grade 2 and again at the end of grades 3 and 4. The stu-
dents were asked to explain actions that appeared puzzling according to
modern ways of thinking. They were given information about the people
concerned and the circumstances they faced, including the broader con-
text of the situation. The materials also included information about ideas
and values held by people at the time.

In grade 2, 6 children were baffled in the face of a puzzling action,
and 12 gave explanations of action in personal terms (e.g., the emperor
Claudius ordered the invasion of Britain because he “wanted gold”). By
grade 4 there was a shift: 2 children remained baffled, but more than half
had moved to or beyond explanations appealing to roles (e.g., explaining
the invasion by appeal to the kinds of things that emperors do). Four chil-
dren explained by examining the situation in which people were acting.

One fourth grader (Carol) tried to reconstruct the situation and values
of Elizabeth I to explain why she delayed so long in ordering the execution
of Mary, Queen of Scots, in a way not characteristic of many eighth grad-
ers.*

Carol Well, there’re a number of reasons. Well, one,
Mary was Elizabeth’s cousin, and she couldn’t
desert her just like that, even though, well,
their differences; and also I think she wanted to
hold the favor of the Catholics in England and
Scotland for as long as she could, and also,
she didn’t want to have a civil war, as I said,
she didn’t really have the money to, er, well,
get together an army to fight.

Interviewer So, erm, hang on . . . so she wanted to avoid
civil war?

Carol Yes.

BOX 2-5 Exploring the Logic of the Situation
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Interviewer Who would she have had the civil war with?

Carol Well, as she was a Protestant, she might have
had a civil war with the Catholics.

Interviewer Ah, right, right, anything else?

Carol Er, well, it partly . . . it might have been to do
with the other countries, the Catholic coun-
tries, France, Spain, Holland. And she might
have, even though they weren’t sort of joined
together, united as friends, I think she wanted
to avoid a war, at least very bad relations with
those countries.

Interviewer Right . . . and why would she want to avoid a
war with those?

Carol Well, as I said before, there’s the money, the
. . . she wanted to keep, and also, well, I
suspect she wanted to keep on good relations
with the whole of Europe.

Interviewer Right, any other points?

Carol Er, not really. I don’t think so, at least.

Interviewer No, Ok. Does anything puzzle you about
Elizabeth delaying for so long?

Carol No, no.

Interviewer Nothing at all?

Carol No.

Carol’s achievement here is considerable. She takes into account
Elizabeth’s relationship with Mary, the possibility of clashes between Prot-
estants and Catholics at home, the danger of war with other European
countries, and the financial burdens of war. But none of these consider-
ations goes beyond present-day ways of thinking about Elizabeth’s deci-
sions. Despite having relevant information at hand, Carol does not, for
example, take account of Elizabeth’s reluctance to execute another mon-
arch, and shows no sign of understanding what a serious step this would
be.

*Interview from unpublished CHATA longitudinal study, Lee, Dickinson, and
Ashby (1996b).
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seeing it as explaining, for example, why the Civil War happened as op-
posed to “nothing” happening. But the task for historians is to explain why
the Civil War occurred rather than other possibilities (such as a compromise
solution or the gradual demise of slavery).

Another idea connected with seeing causes as special kinds of events is
that causes are discrete entities, acting independently from each other. Con-
strued this way, they can be thought of as piling up so that eventually there
are enough causes to make something happen. Hence students make lists,
and the more causes are on the list, the more likely the event is to happen.
(The bigger the event, the longer the list needs to be.20) Some students,
while still seeing causes as discrete events, go beyond the idea of a list and
link the causes together as a linear chain. The first event impacts on the
second, which in turn causes the third, and so on down a line. Should a
textbook tackle the question of why Europeans went exploring with brief
sections on the Renaissance, the rise of nation states, demand for luxury
goods, and technological developments, some students will see these as
interchangeable items. Others will try to order them in a linear chain, seeing
the Renaissance as leading to nation states, which in turn led to demand for
luxury goods, which in turn led to technological changes in navigation and
ship design. This is a more powerful idea than simply piling causes up, but
still makes it difficult for students to cope with the complex interactions that
lie at the heart of historical explanations.21

The notion of causes as discrete events makes it difficult for students to
understand explanations as dealing with relationships among a network of
events, processes, and states of affairs, rather than a series of cumulative
blows delivered to propel an outcome forward. In the textbook example of
the question of why Europeans went exploring, the Renaissance helps ex-
plain developments in technology and astronomy, the rise of the nation
state helps explain both demand for luxury goods from the east and the
technological developments, and those technological developments in turn
made it possible to meet and indirectly further stimulated the demand. There
is a network of relationships involved, not a simple chain. In historical ex-
planations, the relationships among the elements matter as much as the
elements themselves—it is how they came together that determined whether
the event we want to explain happened, rather than something else. Within
this network of interacting elements, a key idea is that there are some ele-
ments without which the event we are explaining would not have occurred.
This idea provides a basis for understanding that historians tend to select
necessary conditions of events from the wider (sufficient) set. If these neces-
sary conditions had not been present, the event we are explaining would
not have happened; it is often these that are picked out as the “causes.” This
in turn gives students a means of thinking about how to test explanations. If
causes in history are usually necessary conditions and necessary conditions
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are the ones that must be present for the event to happen, we can test an
explanation by asking whether the event could have happened without the
causes selected to explain it (see Box 2-6).

Historical explanations place some relationships in the foreground as
causes and treat others as background conditions. A “cause” in history is

Researchers in Project CHATA gave British students in grades 2, 5, 6, and 8 car-
toon and text material on Roman and British life prior to the Roman conquest of
Britain and a short story describing Claudius’s invasion. They were then given two
explanations of why the Romans were able to take over most of Britain. One said,
“The Romans were really able to take over most of Britain because the Roman
Empire was rich and properly looked after.” The other said, “The Romans were
really able to take over most of Britain because they beat the Britons at the battle
by the River Medway.” They were then asked how we could decide whether one
explanation is better than another.

 James, an eighth grader, shows that he is thinking of causes as necessary
conditions. (He replies using his own labels––A and B for the two rival causes he is
considering and X for the event he was asked to explain.)

If without A, X doesn’t happen, but it does [happen] even without
B, then A is more important than B.

If point A [the Roman Empire was rich and properly looked after]
wasn’t true, could the Roman takeover of Britain still happen?

If point B [the Romans beat the Britons in a battle by the River
Medway] wasn’t true could the Roman takeover of Britain still
happen?

A good explanation would mean the Roman takeover of Britain
couldn’t really happen while a bad explanation wouldn’t stop it
happening even if the explanation wasn’t there/wasn’t true.

 In a further example, in which James is testing the explanation that the Ro-
mans took over Britain because they had good weapons, he asks:

If the Romans didn’t have good weapons, would they have been able
to take over Britain anyway? If they could, then [the suggested
explanation] is wrong.

SOURCES: Lee (2001, p. 80), originally in Lee and Ashby (1998).

BOX 2-6 Causes as Necessary Conditions
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frequently chosen because it is something that might have been different or
is not to be found in other (“normal”) situations. This perspective, too, con-
nects with everyday life, but this time more helpfully. The cause of a rail
disaster is not the fact that the train was traveling at 80 mph but that the rail
was broken, or the driver went past the signal telling him to stop. Our ideas
about what is normal help us decide what is a background condition and
what is a cause. Trains often run at 80 mph without coming off the rails. But
a broken rail is not present in those cases in which the incident did not
happen, and drivers might be expected to stop when signals tell them to.
Thus it is these states of affairs, events, or actions that tend to be identified as
“causes.”

It is easy for students to assimilate this distinction between background
conditions and causes into the everyday distinction between long- and short-
term causes. When they do so, they are likely to try to differentiate causes by
attempting to assign them dates, fastening on arbitrary cut-off points be-
tween long and short instead of understanding the more context-related
ways in which we pick “causes” out from the mass of interconnected ante-
cedents to particular events.

If students think of causes as discrete events that act to produce results,
they have difficulty recognizing that it is the questions we choose to ask
about the past that push some factors into the background and pull others to
the foreground to be treated as causes. We select as a cause something
absent in other, comparison cases. The question of why the Roman Empire
in the west fell is a classic case. The question may be answered in at least
two different ways: first, “when it had successfully resisted attack for hun-
dreds of years,” and second, “when it didn’t end in the east.” In the first case
we look for events or processes that were present in the fifth century but not
(to the same degree) earlier. In the second we look for factors present in the
west in the fifth century but not at that time in the east. What counts as a
cause here, rather than a background condition, is determined in part by
what question we ask.22

Evidence

We have already noted the way some ideas about how the past can be
understood bring the study of history to a halt while others allow it to move
forward. The concept of evidence is central to history because it is only
through the use of evidence that history becomes possible. Even when stu-
dents ask themselves how we know about what happened, however, it does
not follow that they will recognize source material as evidence to be used
differently from the notes or textbook accounts they may encounter on other
occasions.
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Research suggests that for some students, the question of how we can
know about the past does not arise.23  Younger students in particular are
likely to assume that history is just known; it is simply information in au-
thoritative books, such as encyclopedias. Forced to consider the question of
how we know, they may slip into an infinite regress (bigger and better
books) or assume that a witness or participant wrote down what happened
on “bits of paper,” in diaries, or in letters, or even carved it into the walls of
caves (see Box 2-7). The assumption that the past is given on authority
makes any encounter with multiple sources problematic. If sources are sim-
ply correct or incorrect information, all we can do is accept or reject what is
proffered. Sources either get things right, or they do not. Common sense
suggests that if two sources say one thing and a third says something differ-
ent, the third must be wrong. And once one knows which sources are right,
why bother with reading two that say the same thing?

The idea that what we can say about the past depends on eyewitnesses
can provoke apparently similar reasoning, although it has a different signifi-
cance. Students still count sources to decide what to believe (the majority
wins), but there is an implicit understanding that the question of how we
know about the past is at stake. We may still just have to accept or reject
what we are told (after all, we were not there, so how else can we know),
but we have a more sophisticated basis for making a choice. We can begin
to ask questions about whether the witnesses agree, whether they are truth-
ful or not, and even whether they were in a position to know. Once students
ask such questions, further questions arise about why people lie or distort
the truth in partisan and selective ways. Here a further everyday idea comes
into play—the notion of bias.

The trouble is that students are likely to hold well-established everyday
ideas about personal bias, which often surface in the statement “He would
say that, wouldn’t he.” Students know only too well that people have their
own agendas and may twist what they say to fit them or that people tend to
take sides, whether personally or as part of a social group. One study found
that even many students aged 16–18 who were taught about the importance
of detecting bias in historical sources behaved as though bias were a fixed
property of a source that rendered it useless. Once they managed to find any
sign of a point of view, the students jettisoned the source; there was no
point in considering it further.24  This kind of idea again rests on the assump-
tion that historians can repeat only what past sources have truthfully re-
ported. And since students know that most people’s reports must be taken
with a grain of salt, they regard history as a dubious activity.

The preconception that history is dependent on true reports also en-
courages students to think of the reliability of a source as a fixed property,
rather than something that changes for different questions. This notion in
turn can lead students to take the historian’s distinction between primary
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Denis Shemilt explored U.K. students’ ideas about evidence. He found
that for some students the question of how we know about the past does
not arise, whereas others understand that historians used evidence to
produce knowledge about the past. Research conducted under Project
CHATA more than a decade later found very similar patterns of ideas.

 When students stick with common-sense ideas they can run into
difficulties. This is clear in the following excerpt, in which Annie, a ninth-
grade student, responds after being asked how she knew that Hitler started
World War II:

Annie I’ve read it.

Interviewer How did the author [of the book] know?

Annie He might have been in the war or have been
alive and knew what happened.

Interviewer How do people who write books know about
cave men?

Annie The same . . . only they’ve to copy the books
out again and translate some of ’em.

Interviewer Are you saying that cave men wrote history
books?

Annie No, they’d carve it on the rocks.

Contrast this with Jim, an eighth grader, who can see that sources
must be interrogated if we are to say anything about the past.

Interviewer Is there anything you have to be careful about
when you’re using sources to find out what’s
happened?

BOX 2-7 Finding Out About the Past: Received Information or
Evidence?

and secondary sources to mean that the latter are less reliable than the
former. The recognition that someone writing a long time after an event has
occurred is not in as good a position to know about it as someone writing at
the time is useful as a broad principle. The danger is that students will
mistakenly generalize the principle to historians, as if their histories were
also reports from the past rather than attempts to construct pictures of the
past on the basis of evidence. This misconception is all the easier to fall into
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Jim You have to think about how reliable they’re
going to be . . . either if they’re a long time
after the event they, they’re not likely to be,
erm, primary sources of evidence, there’s
going to be more passed on either by reading
something or having a story told to you, which
if its told you it’s less likely to be accurate
because details. . . .

Interviewer  . . . Details go in the telling?

Jim Yeah, and also if it’s a particularly biased piece
of evidence [we] might have to look at it and
compare it to another piece of evidence, and it
might not be much good on its own to get
information, just opinion—it would only be
good if you wanted an opinion of how people
saw the event.

Interviewer Right.

Jim So you have to look at what context you’re
looking at the evidence in and what you want
to find out from it.

 Jim makes the point that reports can be damaged in transmission
over time, and shows he is aware that we must weigh how far we can
trust reports about the past. However, he also distinguishes the value of
a source as a report of what happened from its value as a means of shed-
ding light on a different kind of question—how people saw what hap-
pened. He is beginning to show signs of recognizing that we can ask
questions about the past that the sources we have were not meant to
answer.

SOURCES: Shemilt (1987); Lee, Dickinson, and Ashby (1996a).

when both contemporary reports and historians’ inferential arguments are
called “sources.”

In any case, the distinction is a difficult one, and presupposes that stu-
dents already understand it is the questions we decide to ask that determine
whether something is a primary or a secondary source. Thus Gibbon’s book
The History of the Decline and Fall of the Roman Empire may be either a
primary or a secondary source, depending on whether we are asking ques-
tions about Rome or about eighteenth-century ideas. Much the same sort of



58 HOW STUDENTS LEARN: HISTORY IN THE CLASSROOM

issue arises for Frederick Jackson Turner’s argument before the American
Historical Association in 1893 that the frontier was closed. Even the idea that
a primary source is contemporary with whatever it addresses encounters
difficulties with something like Bede’s History. In the face of these difficul-
ties, some students develop their own categories; as one sixth grader said:25

“I can tell this is a primary source because it doesn’t make any sense.”
A crucial step for students in shedding everyday preconceptions and

making real headway in understanding historical evidence is therefore to
replace the idea that we are dependent on reports with the idea that we can
construct a picture of the past by inference. Historians are not simply forced
to choose between two reports, but can work out their own picture, which
may differ from both.26  With this understanding goes the recognition that we
can know things about the past that no witness has reported. What matters
is the question we are asking. Gibbon and Turner were not reporting any-
thing about the beliefs and values of their time, but historians may use what
they said (and other evidence) to produce an account of those beliefs and
values. Jim, in Box 2-7, shows signs of thinking like this when he says you
have to remember what you want to find out from any piece of evidence
you are using.

Once students understand two parallel distinctions—between relic and
record and between intentional and unintentional evidence—they can es-
cape from the trap set by some of their everyday preconceptions. A record is
a source that intends to tell us, or someone else, something about some
event, process, or state of affairs. Relics are sources that were not intended
to tell us what happened, or sources that are used by an investigator to
answer a particular question in ways that do not depend on what they
intend to report but on what they were part of. Coins, tools, and acts of
Congress do not report the past to us, and so cannot be more or less “reli-
able.” They are the traces of human activities, and we can use them to draw
inferences about the past. Even deliberate reports of the past can be used to
answer questions in this way when we do not ask about what they meant to
report, but what they show about the activity of which they were a part.

One final point is worth making in connection with students’ ideas about
evidence. Common sense dictates that claims must be backed up, so stu-
dents understandably look for evidence that does this: the more, the better.
This is perfectly acceptable, but students also need to understand that how-
ever much evidence they gather in support of a claim, one piece can be
enough to refute it. Learning to try to disconfirm claims may be difficult
initially, but disconfirmation can be a highly efficient strategy in the face of
a multiplicity of claims. We say “can be” because in history matters are
seldom clear-cut, so the single piece of knockout evidence may be difficult
to find, and there is always a danger that students will try to short-circuit
difficult problems demanding judgment simply by trying to discredit what-
ever is put before them.
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Accounts

The concept of a historical account is related to that of evidence. Whereas
with evidence the focus tends to be on the establishment of particular facts,
with accounts we are more concerned with how students view historical
narratives or representations of whole passages of the past.

Many younger students appear to work with the idea that what makes a
“true story” true is that all the component singular factual statements within
it are true. As a first move in distinguishing between true stories and fiction,
this idea is reasonable enough, but as a characterization of a true story, it
will not stand up even in everyday life. All the component singular factual
statements in an account may be true, but the meaning of the account may
still be highly contestable. The meaning of a story is more than the sum of its
parts. In history this point is of great importance, as the following account
demonstrates.

Adolf Hitler

In 1933 Adolf Hitler came to power in Germany. In elections held
soon after he became chancellor, he won a massive majority of the
votes.  Pictures taken during his chancellorship suggest his popu-
larity with the German people.  He presided over an increasingly
prosperous nation.  A treaty signed with France in 1940 enabled
Hitler to organize defenses for Germany along the Channel coast,
and for a time Germany was the most militarily secure power in
Europe. Hitler expressed on many occasions his desire to live peace-
fully with the rest of Europe, but in 1944 Germany was invaded
from all sides by Britain, the United States, and the Soviet Union.
Unable to defeat this invasion of his homeland by superior num-
bers, Hitler took his own life as the invading Russian armies dev-
astated Berlin. He is still regarded as one of the most important
and significant figures of the twentieth century.

Every component statement in this account is true, but the story would
not be accepted by most people as a “true story,” and no historian would
regard it as a valid account. Given that its title indicates a general survey of
what is important about Hitler and his political career, the most obvious
defect is the omission of clearly germane material that would give a different
implicit meaning to the story. Moreover, what is said carries implications that
would normally be specifically ruled out if they did not hold. If we are told
that a politician won a massive majority, this normally means that voters had
choices and were not under duress. The point of saying, without qualifica-
tion, that someone has expressed a desire to live at peace is that it shows
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what he or she wants, and Hitler did not—in any straightforward sense—
want peace. The account puts matters in ways that would normally suggest
certain relationships, but in this case the relationships are highly question-
able.

Students tend to deal with the problem that true statements do not guar-
antee acceptable historical accounts by using concepts employed in every-
day life. If accounts are not clearly and unambiguously true or untrue, they
must be matters of opinion. This view carries with it the idea that it is impos-
sible to choose between conflicting accounts and, for some students, the
idea that therefore anything goes. History is reduced to an arena in which
opinions are freely exercised, like dogs in the park.27

Another preconception that can cause difficulties for students is the idea
that a true account is a copy of the past rather than something more like a
picture, or better still, a theory. If students think true stories are copies of the
past, there will obviously be a problem when different stories exist. One
way students explain this is by saying that different stories must arise when
historians make mistakes. Another explanation is that part of the story has
not been found. It is as if stories lie hidden like mosaics buried beneath the
sands, waiting to be uncovered, but when historians sweep aside the sand,
they find that some pieces are missing. Either way, the view is that historians
do not know the real story (see Box 2-8).

Some students think alternative historical accounts are created when
people deliberately distort the truth, usually because they are “biased.” The
everyday idea of bias as something like taking sides allows students to at-
tempt to solve the problem by looking for accounts written by someone
neutral. This approach makes sense for everyday clashes between two people
with clear interests in some practical outcome (Who started the fight?), but it
does not work for history, where alternative accounts may have nothing to
do with taking sides over a practical issue. The ideal of neutrality is some-
times broadened into writing from a “perspective-free” stance.28

Such ideas will cause difficulties for students until they can see that
stories are not so much copies of the past as ways of looking at it. The key
notion here is that stories order and make sense of the past; they do not
reproduce it. There can be no “complete” story of the past, only accounts
within the parameters authors unavoidably set when they decide which
questions to ask (see Deirdre in Box 2-8). All this means that accounts de-
mand selection, and therefore a position from which selection is made. A
point of view is not merely legitimate but necessary; perspective-free ac-
counts are not possible. Research suggests that some students already un-
derstand this point by the end of eighth grade.29  They know we can assess
the relative merits of alternative accounts by asking the right questions. What
are the accounts claiming to tell us? What questions are they asking? Are
they dealing with the same themes? Are they covering the same time span?
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How do they relate to other accounts we accept and to other things we
know?

SUBSTANTIVE CONCEPTS
Second-order, disciplinary concepts such as change and evidence, dis-

cussed above, are involved in any history, whatever the content. Other con-
cepts, such as trade, nation, sachem, protestant, slave, treaty, or president,
are encountered in dealing with particular kinds of historical content. They
are part of what we might call the substance of history, and so it is natural to
call them “substantive concepts.”

Such concepts belong to many different kinds of human activity—eco-
nomic, political, social, and cultural. They are numerous and fit together in
many different ways, which makes it difficult to form a coherent picture of
student presuppositions about these concepts. As teachers, however, we
tend to be much more aware of the substantive preconceptions students
bring to lessons than of their disciplinary ideas. As part of the content of
history, substantive concepts are usually central to what we think of our-
selves as teaching, and if we forget to pay attention to students’ ideas, they
often remind us by revealing the misconceptions that can be so frustrating
(and sometimes entertaining).

Concepts are not the same as names and dates. It is important to re-
member that understanding concepts—such as colony, market, or migra-
tion—involves knowing a rule (what makes something a migration, for ex-
ample) and being able to identify instances of that rule. The substantive
concepts we encounter in history can come from any walk of life or any
discipline, but each denotes a cluster of kinds of things in the world. Names
and dates are not like this; they are particulars that students must know
about as individual items. Moreover, names are not limited to people. Some
denote particular things, such as the Constitution, or France, or Wounded
Knee. Some, like the American Revolution, denote a cluster of events and
processes not because they are one kind of thing, but because they make up
a greater whole to which we wish to assign a name. Of course, constitution
is a concept that we want students to understand and apply across a range
of cases, but the Constitution is the name of one particular case. Similarly
while revolution is a general concept, the American Revolution is the name
of a particular instance, although in this case exactly what it denotes can be
disputed. This kind of dispute is a frequent occurrence in history (consider
the Renaissance, the Age of Discovery, and the Industrial Revolution), and
one that we need to help students understand if they are to be able to make
sense of differences in historical accounts.

Substantive concepts in history involve a complication not often en-
countered in the practical concepts of everyday life: their meaning shifts
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While some students think of history stories as copies of the past (pro-
vided we know enough to get things right), others think of them as alter-
native ways of answering questions and making sense of the past.

 In CHATA research exploring students’ ideas about historical accounts,
researchers gave 320 students in grades 2, 5, 6, and 8 two different sto-
ries of the Saxon invasion of Britain, one concentrating on the arrival of
the Saxons and one taking the story right through the period of settle-
ment. The students were then asked to say whether they agreed or dis-
agreed with the following statement:

History really happened, and it only happened one way, so
there can only be one proper story about the Saxons in Brit-
ain.

Amy, a second grader, was interviewed:

Interviewer You said “because it happened or we wouldn’t
know it.” So, do you think history only hap-
pened one way?

Amy Yes.

Interviewer Yeah? And do you think there’s only one proper
history story about the Saxons in Britain?

Amy Yes.

Interviewer How come we’ve got all these other different
stories then, Amy, do you think?

Amy Because they don’t know which one’s the real
one.

Interviewer Right.

Amy And they just make them up.

BOX 2-8 Historical Accounts Are Not Copies of the Past

over time as well as space. An eighteenth-century king is not the same as a
fifteenth- or a twenty-first-century king, and students who think they are
likely to behave in the same way and have the same powers and roles are
likely to become confused. Conceptions of presidents, church leaders, and
even the wealthy or beautiful differ in different times. Thus while students
can learn, for example, what a president is, they may run into difficulty if
they gain this knowledge in the context of Thomas Jefferson and go on to
assume when they deal with Lyndon Johnson and the Great Society that
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Interviewer Who makes them up?

Amy The historians.

 Amy is convinced that if there is more than one story, there must be
something wrong. Not all students go as far as Amy in their dismissal of
historians, but many share her view that if only one thing happened, there
can only be one story. Annabelle, a sixth grader, writes:

Something in history can only happen one way. I got up this
morning. I wouldn’t be right if I wrote I slept in. Things only
happen one way and nobody can change that.

These students think of history stories as copying the past: one past gives
one true story.

Deirdre, an eighth grader, takes a very different view. She recognizes
that different stories fit different questions and is therefore able to see
that there can be more than one historical account of the “same” events:

Yes, history really did happen. Yes, there was an outcome.
But lots of different factors and things may have affected it.
A history story may emphasize one particular point, but it
doesn’t mean that that is the only correct history story. They
can say different things to answer certain questions. They
can go into more detail on a certain point. They may leave
out certain points but it doesn’t mean it is right or wrong.
There can be many different history stories about one thing.

SOURCE: Lee (2001).

presidents are just presidents. The full significance of Jefferson can be un-
derstood only through the historical accounts of his presidency. Indeed,
learning about historical particulars always involves studying historical ac-
counts; in other words, it means knowing some historical content.

The concepts that enable us to operate in the world are not neatly
defined, closed capsules. We cannot expect students to learn definitions and
examples, however thoroughly, on a particular occasion and then simply
apply them to other cases. Students’ social concepts emerge out of current
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ways of life and fit into patterns of behavior that may not be fully under-
stood, but are so “normal” that for students they are just the way things are.
Students carry these concepts with them into the past. Apparently harmless
concepts, such as town or painter, can be burdened with present associa-
tions, never deliberately taught, that may cause serious difficulties. When
students learn of the Pilgrims coming upon an abandoned Native American
“town,” some assume that the Pilgrims were on to a good thing: at least they
would quickly find shelter in some of the empty buildings. But even when a
concept is not one that is salient in their everyday lives, students may assimi-
late it into known patterns of behavior that are. One of the first things begin-
ner history teachers learn is that for most youngsters, a monk is likely to be
a pretty safe source of evidence. How could it be otherwise? Monks spent
their time worshipping God and living a Christian life. Clearly they would
not tell lies.

Research suggests that while there may be differences in the develop-
ment of relevant political and economic concepts in different societies, there
may be commonalities in the United States and Western Europe.30  There is
some evidence from Europe that between second and fifth grade, the idea of
someone in charge, a “boss,” develops, although politicians are often not
distinguished from other forms of boss. Students are likely at this age to
think of people in power giving commands through direct personal con-
tact.31  Research provides some support for a pattern in which political and
military affairs are understood by students first as the actions of individuals
or collectives without structure (such as a crowd) and later in terms of sys-
tems and structures (such as armies and nation states).32  A recent study
found that before fourth grade, many Italian students believe wars are be-
gun by individual fighters and end when people are too tired to go on or are
enslaved or killed.33  From the fourth grade on, students are more likely to
see war as a clash between nation states and to believe that political authori-
ties begin and end hostilities. Even within a particular society and school
system, however, students’ political concepts may develop in very different
ways, depending on what experiences they have had, as well as on what
they have been taught.34

In economic matters (money, profit making, banking, ownership, pov-
erty, and wealth), students tend to transition from ideas based on moral
norms to more overtly economic ideas in which people and actions are
considered in terms of their potential as opportunities to increase personal
wealth. Youngsters tend to think that shopkeepers exist to make people
happy and will be pleased if prices drop, since that means people can save
their money. By fourth grade, most students should be beginning to inte-
grate ideas about, for example, buying and selling, so as to understand the
workings of economic life. But an understanding of these things at the level
of everyday life does not necessarily carry over into other areas. Ninth or
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tenth graders may have difficulty understanding how banks make profits,
and the fact that sixth graders can cite profit as a motive for starting a factory
does not necessarily mean they understand how shops, let alone factories,
make profits35 (see Box 2-9).

We need to remember that even when students have a quite sophisti-
cated understanding of political and economic concepts, they may find it
difficult to transfer those concepts from one case to another in history. A
consequence of changes in the meaning of concepts in history is that learn-
ing history means paying attention to details and to contexts because they
often determine what can and cannot be transferred. This is a point made at
the beginning of the chapter in describing students who tried to apply ideas
about the origins of World War I to the origins of World War II. (Both World
Wars I and II are historical particulars, of course, even though both fall
under the concept of war.) In short, students need to know some substan-
tive history well: they need to have a deep foundation of factual and con-
ceptual knowledge and to understand these facts and ideas in a broader
framework. The qualification “some” history is important because what stu-
dents do know must be manageable. And for what students know to be
manageable, it must be organized so they can access and use it, knowing
how to make cautious and realistic assessments about how far and in what
circumstances it is applicable. We therefore need to consider the kind of
history that will allow this to be achieved.

HISTORY THAT WORKS
In the previous section, the focus shifted from second-order understand-

ings of the kind of discipline history is to substantive understandings of the
content of history. Students certainly need to know some history well if they
are to see, first, that there are nuances and complications within any particu-
lar topic or period that may or may not apply outside it, and, second, that
however much they know, it may still be necessary to know more. But as
they begin to make connections between how people in the past saw things
on the one hand and actions, policies, and institutions on the other, it be-
comes possible for even young students to begin to appreciate something of
the complexity of historical understanding. For such understandings to de-
velop, a topic (and preferably more than one) must be studied in depth. But
not everything has to be thus studied. As long as the scope and scale of a
particular in-depth study are workable, students can be introduced to the
kinds of thinking required. Here such concepts as empathy and evidence are
central, and time must be allowed for students to begin to develop their
ideas of how we can make claims about and understand the past.

While understanding something in depth is a necessary part of learning
history, however, it is not enough. Moving from one in-depth topic to an-
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BOX 2-9 Substantive Concepts in History: Payment for Work

As part of a broad investigation of students’ ideas about a range of eco-
nomic concepts, Berti and Bombi interviewed 60 Italian students aged 6
to 14 to explore their understanding of payment for work. They found that
some second graders envisaged payment for work as an exchange be-
tween just two figures: one person providing goods or services and an-
other consuming them. They saw “pay” as an exchange of money, but
had no clear idea of the direction of the exchange, seeing the relationship
as comparable to that of friends who give each other money. (“Change”
was seen as money given to the purchaser of goods, and the youngsters
thought it may often be more than is tendered in the first place.) Chiara
(age 6) explained how people get money at the drugstore.

When you go to get medicine, then the money they give you
for the medicine you keep for getting something to eat.

 The interviewer asked whether her father, who owned a drugstore,
gave people more or less or the same amount as they gave him. Chiara
replied:

My daddy gives them different amounts. . . . [He] gives more
than they gave.

Most third graders understood payment for work in terms of a “boss”
figure paying people for work, seen either as a private owner of a busi-
ness or the council or state (understood as a much richer version of the
private owner). They knew that the money goes from boss to worker, but
did not necessarily understand how the boss acquires the money used to
pay the workers or whether the boss is also paid.

 Massimo (age 61/2), having said that people who organize work pay
the workers, explained how these people in turn get their money:

Massimo Sometimes they get it from home, maybe they
ask their wife for it and . . . sometimes they
find it in their wallet, if they don’t have much
then they go and get it from those who have.
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Interviewer And the man who pays the bus-driver, how
does he come to have the money?

Massimo He could go to the bank and get it.

Interviewer What is the bank?

Massimo Where they go and put money, and when they
need it they go and take it. . . .

Interviewer To get the money does this man have to put
some in the bank already or does the bank give
him some all the same?

Massimo The bank gives it to him.

More than half the fifth graders and all the seventh graders could fit
the idea of payment for work into a framework of relationships whereby
bosses, too, receive money from other business people or customers who
buy goods and services from their business. Giovanni (aged 10 1/2) was
asked who pays factory workers:

Giovanni The owner of the factory.

Interviewer And how does he get the money?

Giovanni Because while others work to produce various
objects, the owner sells them at a higher price,
then he gives a small percentage to the
workers, and he himself keeps the greater part
of the money he’s made.

Of course, American children may not have exactly the same ideas as
Italian children. The point is not that all students, in whatever culture, will
have the same range of ideas, although this is a possibility in Western
industrialized countries; research in Britain, for example, appears broadly
to fit the pattern suggested by Berti and Bombi. The importance of re-
search of this kind is that it makes us aware that we cannot assume stu-
dents share adults’ assumptions (even at a very basic level) about how the
economic, social, and political worlds work. Teaching history without rec-
ognizing this may have serious consequences for students’ ability to make
sense of the history they encounter.

SOURCE: Berti and Bombi (1988, pp. 32, 34, 38).
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other and illuminating each in the historical spotlight only begins to develop
historical understanding if such topics are set in a wider historical frame-
work. Students will be unable to make much sense of historical change if
they examine only brief passages of the past in depth. The snapshots of
different periods they acquire will differ, but it will be impossible to say why
the changes occurred. Moreover, if students need study only short periods of
history, they will have no opportunity to come to grips with a central char-
acteristic of historical accounts—that the significance of changes or events
varies with timescale and theme. A long-run study is therefore essential for
students both to understand the kind of discipline history is and to acquire a
usable framework of the past.

Working through a narrative sequence of events of the history of the
United States may not be the most effective way of helping students acquire
a framework that can be adjusted to accommodate to or assimilate new
knowledge. To provide something students can use and think about, we
may need to teach a big picture quite quickly, in a matter of two or three
weeks, and keep coming back to it. Such a framework focuses on large-
scale patterns of change, encompassing students’ in-depth studies so they
are not simply isolated topics. For a temporally extended topic such as mi-
gration, exploration, and encounter, students can derive a broad picture of
migration to and within America, at first picking out just the main phases of
population movement to America (the land bridge crossings, the Arctic hunters,
the Europeans). As in-depth studies of Native American settlement and later
European arrivals (including Columbus, later Spanish exploration, Virginia,
and the Pilgrims) are taught, they can be fit into this broad picture. But if it
is to be a usable framework, the original broad picture will have to be
adapted and made richer as it expands to include new in-depth studies. The
original three phases will become more complex. Patterns of movement
within America can be taught (again quickly), and changes in population
movement from outside can be studied, so that, for example, differences in
the kind of European migration over time are recognized.

Such a framework is not just a long narrative of events and cannot be
organized in the same way as an in-depth study, bringing together all as-
pects of life in their complex interrelations. Instead the framework must
allow students to think in terms of long-run themes, at first rather isolated
from one another, but increasingly linked as students’ understanding in-
creases. Population change, migration, and cultural encounter provide themes
for a framework, but these themes will be taught at the level of a big picture
of change. It is the in-depth studies nesting within the framework that allow
students to explore how the themes play out at the level of events.

If such a framework is to avoid overloading students with information, it
must give them a range of large-scale organizing concepts for patterning
change. It is the ability of such concepts as internal and external migration,
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population density, and life expectancy to “clump” information in meaning-
ful ways that allow students to handle “the long run” in history rather than
becoming overwhelmed by a mass of detail. The in-depth studies chosen to
nest in the long-run study remind students that the details of those studies’
complex interrelations matter too, and can serve as tests for the adequacy of
the framework developed in the long-run study. But the latter must concen-
trate on the big picture, not degenerate into a series of impoverished would-
be in-depth studies. Part of learning history is learning the effect of scale,
and the difference between big generalizations (which can admit of excep-
tions) and singular factual statements.

Taking stock of the ideas presented thus far, we can say that students’
substantive knowledge of history should be organized in a usable form so
they can relate it to other parts of the past and to the present. This means
students need to acquire a usable framework of the past, a big picture orga-
nized by substantive concepts they increasingly understand and can reflect
upon. It also means they need an in-depth knowledge of contained (not
overlong) passages of the past, with time to explore the way of life and
world view of the people they are studying. This in turn allows them to
begin to be aware of the complex interrelations involved and to be thought-
ful and reflective about analogies they draw with other times and places. But
learning history also requires an understanding of history as a discipline,
evidenced in students’ increasing understanding of key second-order con-
cepts. Without this understanding, students lack the tools to reflect on their
own knowledge, its strengths, and its limits.

Any picture of the past to which students are introduced inside school is
likely to encounter rival and often opposed accounts in the wider world
outside.36  As soon as singular factual statements are organized into historical
accounts, they acquire meanings within the stories in which they figure.
Such stories may already be part of students’ apparatus for thinking about
the world before they encounter competing accounts in school. Teaching
multiple perspectives, or critiquing particular accounts, is a valuable step
toward facing up to students’ predicament, but it is not enough.

To understand this point, consider these students’ responses when faced
with two alternative historical accounts. Laurence, an eighth grader, insists
that the differences between the stories do not matter “because it is good to
see how other people thought on the subject and then make your own mind
up. Everyone is allowed to hold on to his own opinions, and no matter what
the evidence, people believe different things.” Briony, another eighth grader,
claims that the differences are just a matter of opinion, and it does not matter
“because it’s up to you to express your opinion unless there are sufficient
facts that prove a story. . . . I think it really is a matter of opinion.” Rosie, a
sixth grader, says accounts will differ “because some people are biased and
therefore have different opinions of how it happened. . . . People are always
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going to have different opinions of how something happened.” If students
think like this, multiple perspectives are simply different opinions, and people
can believe what they want. Xiao Ming, also in the sixth grade, sums up:
“There can be many different opinions from historians so there can be dif-
ferent stories. Of course one has to be true but we don’t know which one.”
Critiquing accounts will not make much sense to Xiao Ming when, despite
our critiques, we can never know which is true.

Without explicit teaching and reflection on the nature of historical evi-
dence and historical accounts, as well as the different ways in which various
types of claims can be tested for validity, multiple perspectives become just
another reason for not taking history seriously. If students are to go beyond
helpless shoulder shrugging in the face of contested histories, they must
have an intellectual toolkit that is up to the task. There is a danger that
“toolkit” implies something overly mechanistic, so that it is simply a matter
of applying the tool to get the job done. Such a simple analogy is not in-
tended here. What is meant is that some tasks are possible only if certain
tools are available, and in this case the tools are conceptual. Students need
the best tools we can give them, understandings that enable them to think
clearly about, for example, what kind of evidence is needed to support a
particular kind of claim or what questions are being addressed in competing
accounts. Once they understand that accounts are not copies of the past but
constructions that answer a limited range of questions within a chosen set of
boundaries, students can begin to understand how several valid accounts
can coexist without threatening the possibility of historical knowledge or
leading to a descent into vicious relativism.

Students have ideas about the past, and about history, regardless of
what and how we teach them. The past is inescapable; it is built into our
ways of thinking about ourselves. What would we say of someone who,
when asked what the United States is, could define it only as a geographical
entity? Our notion of what the United States is incorporates a past; it is a
time-worm. Nor should we think that, because we are often told students do
not know this or that piece of information about the United States, they have
no version of its past. They certainly have one, but the question is whether
it is the best we can give them. And while “the best” here does not mean
“the one best story,” because there is no such thing, the fact that there is not
just one best story most certainly does not mean that any story will do. What
we should give our students is the best means available for making sense of
and weighing the multiplicity of pasts they are offered in various accounts.
To this end, students must learn to understand the discipline of history—the
one offering school can make that the busy world outside cannot. Schools
could hardly have a more important task.

The study of history is often portrayed as learning an exciting—and
sometimes not so exciting—story. This chapter has attempted to show that
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there is more to learning history than this. But we are not thereby absolved
from asking how the history we teach can engage our students and what
they might feel about what they are getting from it. History offers students
(albeit at second hand) strange worlds, exciting events, and people facing
seemingly overwhelming challenges. It shows students the dark and the
light sides of humanity. It is one of the central ways of coming to understand
what it is to be human because in showing what human beings have done
and suffered, it shows what kind of creatures we are. The past is, as has
often been said, a foreign country.37  Its strangeness provides endless puzzles
and endless opportunities for students to widen their understanding of people
and their activities. An important part of understanding what appears strange
is the disposition to recognize that we must try to understand the situations
in which people found themselves and the beliefs and values they brought
to bear on their problems. If students fail to see that there is anything to
understand or do not care whether they understand or not, history will
appear to be a senseless parade of past incompetence and a catalogue of
alien and unintelligible practices. Empathy, in the very specific senses dis-
cussed earlier in this chapter, is central here. Historical imagination needs
tools.

History can also offer another very human motivation—a sense of mys-
tery and adventure. One source of adventure is to follow the experiences of
people who were moving into unknown territory. Such study can be quite
literal, when focused on people who explored lands they had not known
existed, or metaphorical, when focused on those who attempted what no
one had done before in some aspect of life. In the case of one of the topics
discussed in the next chapter—the Pilgrims—the sense of the precarious-
ness of their situation and the sheer scale of the challenges they faced has
long been understood by teachers to offer obvious opportunities for the
engagement of students’ imagination. For older students, a dawning under-
standing of the enormity of the choices Native Americans had to make, in
circumstances in which the future could only be guessed at, can offer a
more complex and morally difficult stimulus to the imagination. But beyond
adventure, strangeness, and a sense of awesome challenges, there is mys-
tery. Young children—and many adults—love the mystery of the unknown.
The voyage of St. Brendan (a topic in the next chapter) appeals to just this
sense of mystery. What happened so long ago? What can we make of such
a weird but sometimes plausible tale? Even better, the mystery arises in
circumstances in which St. Brendan was having real adventures, too.

Of course, if history is the tale of things known, a fixed story that simply
must be learned, then mystery can be reduced to waiting for the next install-
ment. If we teach history as simply a set of facts to be imparted to our pupils,
the mystery is a phony one. The teacher knows the answers, so where is the
mystery? It can only be in deciphering the workings of the teacher’s mind, in
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finding out what he or she wants to hear—in short, in getting the right
answer. In history there are unending opportunities for students to be given
tasks that leave room for them to maneuver, and to be more or less success-
ful in finding a valid answer to an open question. Knowing the facts then
becomes an urgent and meaningful business because they are essential for
beginning to answer the question, and the question is worthwhile because it
is a real question.

For a long time, and not just in history, schools have tended to keep a
kind of secret knowledge from all but their oldest and most able students.
Knowledge is contested, is provisional, and is subject to continuous change.
Mystery never stops, and there is always a job for the next generation to do.
The authors of this and the following chapter still remember, as one of the
high points of their teaching lives, the excitement of the moment when a
group of students whose main subject was science realized that science was
not “all sewn up.” In learning the history of medicine, they came to see—
quite suddenly—that the whole way in which scientists approached and
understood disease had undergone major shifts. They had a future in science
beyond tweaking the textbooks. If they could devise new questions, they
could begin new projects. Knowledge was not closed but open and open to
them, too, if they mastered what was known well enough to understand
what was not.

As we learn more, we should begin to see that mystery does not fade
away as we come to know things. The more we know, the more questions
there are, and the more there is that we need to understand. History must
look like this to students as well. There is excitement in finding oneself in a
richer, more open world than one thought one inhabited, but there is even
more excitement in suddenly finding oneself empowered by a flash of un-
derstanding. It is not only that one has some stake in the answers and the
right to a view. One can actually see that it is precisely what one is learning
that gives one the right to the view, as well as the means to improve upon it.
Understandings of this kind must be taught precisely because they are not
things one picks up in everyday life. Generations of people have had to
fashion the conceptual tools that really make a difference in the way we see
the world. The only institutions whose central task is to hand those tools
on and encourage the next generation to develop them are schools and
universities, and the only people whose professional job it is to do this are
teachers.
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NOTES
1. This reservation is important, but it should also be pointed out that there has

been considerable agreement among independent research teams in the United
Kingdom; moreover, some recent U.S. work, as well as research in places as
diverse as Portugal, Spain, and Taiwan, appears to point in a similar direction.

There is a strong U.S. tradition of research into the ways in which the
meaning of particular history stories and topics is viewed by school students,
but there has been rather less focus on students’ understanding of the disci-
pline. Where such research has been undertaken, many of the researchers,
such as Jim Voss, have worked mainly with college students. However, Keith
Barton, Linda Levstik, and Bruce VanSledright have all done extensive re-
search on the ideas of younger school students. Peter Seixas in Canada has
carried out wide-ranging research with older school students. Sam Wineburg
has worked with school and college students and with historians, and has
recently begun to pay particular attention to ideas acquired outside school.
Other U.S. researchers, such as Gaea Leinhardt, have investigated the differing
approaches of history teachers to classroom history teaching, and investigation
of students’ understanding of textbooks has been widespread.

Students’ understanding of second-order concepts has been explored by
Isabel Barca and Marilia Gago in Portugal; Lis Cercadillo, Mario Carretero, and
Margarita Limón in Spain; and Irene Nakou in Greece. Research in this area
outside the United States and Europe is also beginning to expand. Early find-
ings from a Taiwanese study by Liu Ching Cheng and Lin Tsu Shu suggest that
students in Taiwan share many ideas about historical accounts with British and
Portuguese students. Mario Carretero has carried out some of his research in
Argentina, and Angela Bermudez and Rosario Jaramillo have investigated ideas
about causation in Colombia.

Lists of this kind can only hint at the range of work, and any brief selection
of names is necessarily invidious. This list, for example, omits a whole new
generation of U.S. researchers whose work is beginning to be published. (See,
for example, the authors in O.L. Davis Jr., Elizabeth Anne Yeager, and Stuart
Foster (Eds.). Historical Empathy and Perspective Taking in the Social Studies,
Lanham, MD: Roman and Littlefield, 2001.)

2. Lee et al., 1996a.
3. Shemilt, 1980.
4. Shemilt, 1994.
5. Shemilt, 1983, pp. 11-13.
6. Ibid, 1983, p. 7.
7. Barton, 1999, 2001.
8. Barton, 1996, p. 61.
9. Ibid, 1996, p. 56.

10. Cercadillo, 2000, 2001.
11. Levstik, 2002; Walsh, 1992.
12. Dickinson and Lee, 1978, 1984; Shemilt, 1984; Ashby and Lee, 1987; Lee et al.,

1997; Lee and Ashby, 2001.
13. Ashby and Lee, 1987, p. 71.
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14. Brophy and VanSledright, 1997, p. 130.
15. Lee et al., 1997, p. 236.
16. Lee et al., 1996a, 1997.
17. Dickinson and Lee, 1984, p. 134.
18. Shemilt, 1980, p. 33.
19. Shemilt, 2000, pp. 89-92.
20. Shemilt, 1980, pp. 30-32.
21. Lee et al., 1998.
22. Martin, 1989, pp. 58-61.
23. Shemilt, 1987; Lee et al., 1996a.
24. Thomas, 1993.
25. Ashby, 1993.
26. Wineburg, 1998; Wineburg and Fournier, 1994.
27. Lee and Ashby, 2000.
28. Barca, 1997; Cercadillo, 2000.
29. Lee and Ashby, 2000.
30. Furnham, 1992; Berti, 1994; Delval, 1992; Torney-Purta, 1992.
31. Berti and Andriolo, 2001.
32. Berti and Vanni, 2002.
33. Ibid., 2002.
34. Berti and Andriolo, 2001.
35. Furnham, 1992, pp. 19, 25, 26.
36. Seixas, 1993; Penuel and Wertsch, 1998; Wertsch and Rozin, 1998; Wineburg,

2000.
37. Lowenthal, 1985.
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3
Putting Principles into Practice:

Teaching and Planning
Rosalyn Ashby, Peter J. Lee, and Denis Shemilt

It has been argued thus far that the learning of history can be acceler-
ated and deepened through consistent application of the key findings from
How People Learn, and that these findings should be applied in ways that
acknowledge what is distinctive about the historical enterprise and the par-
ticular challenges it poses to students (see Chapter 2).

The first key finding of How People Learn emphasizes the importance of
students’ preconceptions. Teachers must take account not only of what stu-
dents manifestly do not know, but also of what they think they know. This
finding is confirmed in the study of history by both research and experi-
ence.1  Much of the gap between what we teach and what students learn is
attributable to the fact that students link new knowledge about the past to
preexisting but inappropriate knowledge derived from everyday life. Thus,
for example, an account of the growth of medieval towns may be linked to
existing knowledge about the growth of trees; that is, students assume me-
dieval buildings got bigger, and so the towns grew. More significant still,
students have critical misconceptions—about how we know about the past,
about the relationship between historical accounts and the past they repre-
sent, about what counts as an answer to a “why” or a “how” question, and so
on—that are more difficult to access but that impact profoundly the ways in
which students construe what they are taught. To the extent that we are able
to identify the preconceptions held by students, we may preempt misunder-
standings about the substantive past and, more important, seek to modify
and develop the conceptual tools students need to make sense of history.

The second key finding of How People Learn emphasizes the impor-
tance of providing students with conceptual structures and tools with which
to organize and manipulate factual knowledge. Students must have a deep
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foundation of factual knowledge, but this is not tantamount to saying that
they must learn all there is to know about any topic or set of topics. Because
history is an information-rich subject, it is easy for students to flounder in a
sea of facts that cannot be contained or controlled. And because history is
about people and events that are halfway recognizable, it can sometimes be
viewed as a series of weird soap operas. Thus, the foundations of factual
knowledge must be deep in the sense that its layers of historicity are under-
stood; in other words, the rules by which communities work and people
interact are likely to shift according to time and place. In addition, as is
argued in Chapter 2, the substantive facts and ideas of history must be un-
derstood in the context of a conceptual framework that includes second-
order concepts such as those associated with time, change, empathy, and
cause, as well as evidence and accounts. Indeed, it has been argued that the
systematic development of such concepts is essential for students to be able
to organize knowledge in ways that facilitate retrieval and application.

The third key finding of How People Learn emphasizes the importance
of metacognitive approaches that enable students to reflect on and control
their own learning. This finding relates to the development of second-order
concepts noted above. Students can acquire and refine the conceptual tools
necessary to organize and manipulate information only to a limited extent
until they are explicitly aware of what they are doing. In order, for example,
to determine that a given source is reliable for some purposes but not for
others, or to decide that a source can yield evidence of things that it purports
to neither say nor show, students must be able not merely to draw infer-
ences, but also to know that they are doing so and to make those inferences
objects of consciousness that are evaluated against rules. This level of
metacognitive awareness is unlikely to be achieved in the lower grades, but
its achievement may be accelerated if teachers of third and fourth graders
focus their attention on such questions as “How do we know?” “Is this pos-
sible?” and “If this could have happened, can we say that it did happen?”

This chapter examines what these three key findings entail for the ways
in which we work with students in the classroom and for the strategies used
to plan history teaching. The first section sets the stage for what follows by
addressing the issue of the extent to which these findings can realistically
be applied in the classroom. The next two sections demonstrate the appli-
cability of the findings by presenting two detailed example classroom case
studies.

THE REALITY TEST
The three key findings of How People Learn and the arguments ad-

vanced in the preceding chapter may be thought to reflect too favorable a
view of the realities of teaching in some classrooms. Indeed, we may not
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always have carte blanche in what is taught, but feel obliged to work within
the narrow space between national standards on the one hand and locally
adopted textbooks on the other. In consequence, the second key finding
may appear to presume that we have more freedom in what we teach than
is always allowed us. Worse still, the emphasis placed in the previous chap-
ter and in the first key finding on the identification and systematic develop-
ment of preconceptions and second-order concepts assumes that we have
more in-depth knowledge of how and what students think than may be the
case. At the start of the school year, we may know names and test scores but
little else. Students must still be taught even if we lack in-depth analysis of
their existing knowledge of pre-Columbian civilization or their ability to
empathize with predecessors. Last but not least, the exhortation to take “a
metacognitive approach to instruction” may appear overly optimistic for some
students, who by the end of the year still have not acquired any kind of
coherent story. What chance do they have of becoming metacognitively
aware?

These are fair points, and can serve as acid tests of the value of what is
presented below. At the same time, the reader must keep in mind that a
chapter such as this cannot provide a simple recipe for instant success, as
any experienced history teacher will know only too well. A lesson plan for
unknown children in unknown classrooms invites disaster. This is not just
because all students are different personalities; both research and experi-
ence tell us there are more specific reasons. Individual students have differ-
ent prior conceptions of history, the past, and how things happen in the
world. In addition, students at any given age are likely to be working with a
wide range of ideas (see Box 3-1). We can make some informed predictions
about what ideas are likely to be prevalent among students in a particular
grade, but research makes it clear that in any given class, some students are
likely to be thinking in much more sophisticated ways, perhaps even using
the sorts of ideas more common among students many years older. Like-
wise, some will be operating with much simpler ideas.

Moreover, if we talk here about “fourth graders” and “youngsters” or
“seventh graders” and “older students,” we are not implying that changes in
ideas are an automatic consequence of age. Many seventh graders will hap-
pily go on thinking in much the same ways as fourth graders if they are not
made aware of the problems their everyday ideas create. Teachers are not
the only impetus for changing students’ ideas, but it is part of our job as
teachers to act as if we were. Because we cannot predict the starting points
of any particular class of students, the discussion of example lesson tasks in
the following case studies must be qualified by “ifs,” alternatives, and condi-
tional moves. At the same time, however, practical moves with real teaching
materials used by the authors and by serving teachers in both the United
Kingdom and the United States are suggested.2  They nevertheless remain
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examples only, and do not offer “the best way” to teach these or any other
topics.

Two case studies are presented in this chapter. Each involves a specific
task—comprising teaching materials and questions—in the context of how
the task might be used in developing students’ ideas about historical evi-
dence. The focus of the first case study is a familiar topic, “The Pilgrim
Fathers and Native Americans”; the second deals with a more unusual topic,
“St. Brendan’s Voyage.” It might appear illogical to start with the Pilgrim
Fathers, since the topic chronologically precedes the Brendan voyage. The
fact that the task in the Brendan case study is written for fourth graders,
while that in the Pilgrims case study is for sixth graders, may make the order
appear even more wayward.

Given appropriate teaching, we would expect sixth graders on the whole
to outperform fourth graders in their understanding of historical evidence. If
their teaching has been designed to develop their understanding of evi-
dence, older students will, on the whole, apply more powerful ideas than
younger ones. However, we have already seen that the “7-year gap” means

BOX 3-1 The 7-Year Gap

The CHATA research discussed in Chapter 2 reveals the conceptual understand-
ings of some 8-year-old students to be more advanced than those of many 14-year-
olds. For example, when asked to explain why one account of the Roman invasion
of Britain conflicts with another, some 7- and 8-year-olds suggest that the authors
may have chosen to record “different facts” because they were asking different
questions about the invasion, while many 14-year-olds claim that one or other au-
thor “made mistakes” in their account. It follows that when working with typical
mixed-ability classes, teachers must accommodate a “7-year gap” between the
ideas of the lowest- and highest-attaining students.

Two other CHATA findings are significant in this connection. First, ideas about
different second-order concepts do not develop in lockstep. A student’s understand-
ing of evidence and accounts may be the most advanced in the class, but her grasp
of causal and empathetic explanation may not be as good, and her understanding of
time and change may even be below the class average. Second, students’ ideas
about history do not develop as a necessary consequence of maturation. Many
seventh and eighth graders are happy with their mental furniture and see no need
to rearrange or replace it. To some extent, this is because they lack metacognitive
awareness and conclude that they “are no good at history.” It is one of the more
difficult jobs of teachers to show such students how they can “get good” at the
subject, albeit at the cost and effort of ongoing mental makeover.3
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there is considerable variation in students’ ideas, and in any case, students’
ideas will depend in part on what they have already learned. Moreover,
historical questions can be answered at very different levels of sophistica-
tion, so that students from a range of different grades can profitably tackle
the same materials and questions. Students need not wait until they reach a
certain grade to benefit from trying to weigh the evidence for the claim that
St. Brendan reached America a thousand years before Columbus, but more
conceptually sophisticated students will give different answers than less so-
phisticated ones.

Of course, the language we use in designing our questions and materi-
als is likely to set limits on the range of students who will be able to work
with them, and we cannot expect young students to have the same under-
standing of the adult world—even in the present—as older students. Thus, it
still makes sense to talk of designing tasks for a particular grade, at least as
far as setting limits below which use of the task would be unwise. But if we
encounter students from sixth or seventh grade who have not developed
ideas about evidence that we would normally begin to teach in fourth grade,
we might profitably use the “fourth-grade” task with them.

We therefore begin with the Pilgrim Fathers and Native Americans case
study, on the grounds that it will be a much more familiar topic for most
teachers than the Brendan voyage. The discussion of evidence work in this
first case study assumes that reference is made to a standard textbook and
that we have no privileged knowledge about student preconceptions and
misconceptions. The case study aims to illustrate, first, how it is possible to
identify and work with student preconceptions during the process of teach-
ing; second, how student ideas about a second-order concept, that of evi-
dence, can be developed in ways that support, not supplant, the teaching of
substantive history; and third, how it is possible to promote metacognitive
awareness among students who have no special ideas and abilities.

While the materials and questions in the Pilgrim Fathers and Native
Americans case study are designed for students who already have some
acquaintance with ideas about evidence, the aim of the second case study—
on St. Brendan’s Voyage—is to introduce less sophisticated students to some
key ideas about evidence in the context of an adventure without losing them
in masses of content. There is also a difference in focus between the two
case studies. Discussion of the first emphasizes the identification and refine-
ment of previously acquired ideas about evidence, whereas the second case
study concentrates on the teaching of students who have yet to reach first
base and, in particular, who cannot yet make clear and stable distinctions
between well-founded and speculative accounts of the past.

Although the tasks in the two case studies were designed with students
in grade 4 (St. Brendan) and grade 6 (Pilgrim Fathers) in mind, materials and
questions from both can be and have been used from grades 4 through 8
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and beyond. This notwithstanding, decisions about how—and even whether—
materials and questions are used with given classes must be informed by the
ideas the students are already working with and the kind of responses we
expect. In any case, nothing in what follows is about learning that can be
accomplished in a single or even several short sessions. Even when students
appear to have understood what has been taught in one context, we will
need to return to it in other topics. Changes in students’ ideas take time,
patience, and planning.

WORKING WITH EVIDENCE: PILGRIM FATHERS
AND NATIVE AMERICANS

Exploring the Basis for Textbook Claims and the
Nature of Sources

The choice of the arrival of the Pilgrims as a topic for discussion here
implies no claims about what should or should not be taught. However, it is
clearly a popular topic in textbooks, and one with which readers are likely
to be familiar. It is also relevant to the broader topics, such as “Exploration
and Encounter” and “The Settlement of New England” that are regularly
taught. Moreover, it is a topic that offers opportunities to explore the Pil-
grims’ significance for later generations in America, and supports an exami-
nation of the complex relationships between the newcomers and the native
inhabitants that can help break down stereotyping. There is also a very rich
record available from the testimony of the Pilgrims that can provide worth-
while and exciting learning opportunities, particularly in connection with
understanding the nature of historical evidence.

The questions in the Pilgrims’ task work at two levels. First, they can
expose the assumptions students appear to be working with, and second, as
a consequence, they provide the teacher with a basis for a learning dialogue
with the students.4  As will be seen, such a dialogue can challenge the mis-
conceptions that become apparent and encourage the development of more
powerful ideas, while at the same time providing the teacher with informa-
tion about future learning needs. Testimony of the kind provided in the
materials associated with this task needs to be understood evidentially, and
part of the teacher’s task is to encourage students to think in more complex
ways about the experiences, ideas, and beliefs of these “eyewitnesses.”

The source materials can interact with the textbook so as to transport
students from the security of a few historical particulars and descriptions of
the arrival of the Mayflower in Cape Cod Bay in 1620 to the more precarious
circumstances of William Bradford and John Pory and the early seventeenth-
century world they inhabited. The time and place can be richly explored
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through the materials left behind, and the legacy of the events considered
through their impact on later societies. The search for access to this world
through these materials is likely to be halting and problematic for young
students; good storytellers may well be tempted to believe they can open it
up to their students without involving the testimony of those involved more
directly. Working with students, who are happy to grapple with the difficul-
ties inherent in materials of this kind, provides us with a different perspec-
tive. Learning experiences of any kind, however, need structures, with clear
objectives.

An approach of this kind can be used for a wide range of age and
ability groups. The format can remain the same but the task made to differ
in its language level; the nature, length, and quantity of the sources used;
and the extent of visual material needed to support ideas. The task was
initially designed for sixth graders but was taught to U.K. sixth and eighth
graders as a whole-class lesson. The examples quoted are of two kinds:
written answers to the teachers’ whole-class questions, and excerpts from a
recorded follow-up discussion with a small group of three sixth graders.
(The small-group recording offers a more detailed picture than written an-
swers can provide of how students responded to the questions.) U.K. stu-
dents’ perspective on the Pilgrims is likely to differ from that of equivalent
students in the United States, but the focus here is on students’ evidential
understanding.

Five sources have been chosen. The extracts taken from William
Bradford’s journal have been set out separately in Sources 1 and 3, separat-
ing the arrival of the Mayflower from the expedition ashore, so as to allow
students easier access. The extracts have also been edited to limit the diffi-
culty for these 12- and 15-year-olds.

The three written sources provide testimony from William Bradford about
the arrival and settlement of the Pilgrims at Plymouth in 1620 and testimony
from John Pory, a visitor to the settlement in 1622. Through these sources,
the teacher is able to explore students’ existing understandings of “eyewit-
ness” accounts, and to encourage students to look behind this testimony to
consider the circumstances, ideas, and beliefs of the people directly involved.

The two paintings depicting the arrival of the Pilgrims allow the teacher
to explore and challenge students’ misconceptions about these sources as a
record of the actual events of the time. They also give the teacher an oppor-
tunity to encourage students to recognize that while the paintings may not
provide evidence of the events of 1620, they do provide evidence of the
significance attached to the arrival of the Pilgrims in 1620 by later genera-
tions.

The Pilgrims’ task begins by presenting students with extracts from their
textbooks and a map showing them the location where the action takes
place. The second textbook extract provides an opportunity to introduce the
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testimony of William Bradford and the evidence it may not have been in-
tended to provide.

How do we know about the arrival of the Pilgrims in America?
The Mayflower finds land, and the Pilgrims look for a place to
settle.

One textbook tells us:

On November 11, 1620, after 10 weeks at sea, a small, storm-battered En-
glish vessel rounded the tip of Cape Cod and dropped its anchor in the
quiet harbor of what is now Provincetown, Massachusetts. The people in
the ship were too tired and sick to travel farther. While the Mayflower
swung at anchor in Provincetown harbor, a landing party looked for a place
to settle. These men explored a small bay on the western edge of Cape
Cod. They found a swift-running stream with clear, fresh drinking water.
The area seemed ideal for a settlement. In December, the Pilgrims an-
chored the Mayflower in the bay and began building Plymouth Plantation.5

Another textbook tells us:

They found a spot on the inner shore of Cape Cod Bay and promptly
named it for the town from which they had sailed—Plymouth. At Plymouth
the Pilgrims found abandoned cornfields. Their leader, William Bradford,
sadly described their situation. “What could they see,” he wrote, “but a
hideous and desolate wilderness…what could now sustain them but the
spirit of God and his grace?”6

Here is a map to help you locate the places the textbook is
talking about.
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Once the students are familiar with this basic material from the text-
books, the teacher can give them a briefing sheet. This briefing sheet has
three main purposes: to introduce the students to their inquiry, to encourage
an enthusiasm for the work, and to provide them with an ultimate goal—the
production of their own substantiated account of the arrival of the May-
flower and the decision to settle in Plymouth. The briefing sheet enables the
students to focus on the instructions, to which they can return if necessary;
the teacher works through the instructions with the class, clarifying, check-
ing understanding, and reinforcing them as necessary.

Source 1: An extract taken from William Bradford’s personal
journal, finished in 1650. Bradford was one of the leaders of
the English Separatists whom we now call the Pilgrims.

Having arrived in a good harbor, and brought safe to land,
they fell upon their knees and blessed God who had deliv-
ered them. They had no friends to welcome them and no
inns to refresh their weather beaten bodies; no houses to go
to for food. When St. Paul (in the bible) was shipwrecked the
barbarians were kind to him and his friends but the barbar-
ians here when they met with the Separatists and their
friends were readier to fill their sides full of arrows. And it
was winter, and they knew the winters here to be subject to
fierce storms, and dangerous to travel to known places,
much more to search an unknown coast. They could only
see a desolate wilderness, full of wild beasts and wild
men—and what multitudes there might be of them they
knew not. What could now sustain them but the Spirit of
God and his Grace?

Source 2: “The Mayflower on Her Arrival in Plymouth Har-
bor” by William Formsby Halsall. Painted in Massachusetts in
1882.
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Briefing Sheet

Things for you to think about and things for you to do

How do the people who wrote the textbooks know about these events
when they happened nearly 400 years ago?

The second of these textbook writers gives us a clue about how they
found out.

✦ Can you spot it?

The first textbook tells us more than the second textbook, but the second
textbook helps us understand how the writer knew about the Pilgrims’
arrival.

✦ You are going to carry out your own inquiry about “The Arrival of the
Pilgrims” so that you can write your own version in a way that shows
how you know these things.

Your inquiry will involve looking carefully at some sources and doing some
hard thinking.

Source 3: Another extract taken from William Bradford’s per-
sonal journal, finished in 1650.

Arrived at Cape Cod on the 11th of November and a few
people volunteered to look for a place to live. It was thought
there might be some danger but sixteen people were given
permission to explore. They were well armed and led by
Captain Standish. They set off on the 15th of November; and
when they had marched about a mile by the seaside, they
spotted five or six persons with a dog coming towards
them, who were savages; but they fled from them and ran
up into the woods, and the English followed them, partly to



PUTTING PRINCIPLES INTO PRACTICE: TEACHING AND PLANNING 89

see if they could speak with them, and partly to discover if
there might be more of them lying in ambush. But the
Indians left the woods and ran away on the sands as hard as
they could so they followed them by the track of their feet
for several miles. When it was night they set up a guard and
rested in quiet that night; and the next morning followed
their track till they had headed a great creek and so left the
sands and turned another way into the woods. They fol-
lowed them by guess, hoping to find their dwellings; but
they soon lost both them and themselves. At length they
found water and refreshed themselves, being the first New
England water they had drunk.

Source: A source is something that has survived from the past that we
can use to find out about the past. Sources help us work things out that
we wouldn’t otherwise know.

✦ Read the sources carefully, and as you do this, write down questions
that come to your mind.

(These questions will be useful to your teacher because they will help her
understand how you are thinking.)

✦ Then answer the questions your teacher thought about, set out on a
separate sheet.

(While you are answering your teacher’s questions, she will collect your
questions and think about how to find answers to them.)

Words you might need to know about:

Pilgrims: These people were looking for a place to live so that they could
worship God in their own way without interference. They were called
Separatists at the time because they separated themselves from the offi-
cial ideas the priests in England taught about God. Later people called
them the Pilgrims, and sometimes the Pilgrim Fathers.
Shallop: A small boat. This was used to get close to land because the
Mayflower could not safely go into shallow water.
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Then they changed their direction to get to the other shore,
and on the way found a pond of clear, fresh water, and
shortly after a large area of clear ground where the Indians
had formerly set corn, and some of their graves. And further
on they saw new stubble where corn had been set the same
year; also they found where lately a house had been, where
some planks and a great kettle was remaining, and heaps of
sand newly paddled with their hands. Which, they digging
up, found in them Indian baskets filled with corn of different
colors, which seemed to them a very goodly sight (having
never seen any such before). This was near the place of the
river they thought they might find and they found it where it
opened itself into two arms with a high cliff of sand in the
entrance but more like creeks of salt water than fresh, and
they saw a good harbor for their shallop. Then they returned
to the ship lest the others might be in fear of their safety;
and took with them part of the corn and buried up the rest.

Source 4: “The Landing of the Pilgrims” by Michael Felice
Corne. Painted in Salem, Massachusetts, between 1803 and
1806.

Source 5: Written by John Pory, an official from the settle-
ment at Jamestown, farther south in Virginia, after he had
visited Plymouth in 1622.
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Whether it was because of the wind or the backwardness of
their ship’s captain they did not arrive where they had
planned. Instead they reached the harbor of Cape Cod,
called Pawmet by the Indians. After some dangerous errors
and mistakes, they stumbled by accident upon the harbor of
Plymouth where it pleased Almighty God (who had better
provided for them than they could imagine) to land them
where there was an old town, which several years before
had been abandoned by the Indians. So they quietly and
justly settled down there without having to push any of the
natives out, so not so much as one drop of blood was shed.
Even the savages themselves did not claim any title to it so
that the right of those planters to it is altogether unquestion-
able. The harbor is good for shipping both small and great
being land-locked on all sides. The town is seated on the
ascent of a hill. There is plenty both of fish and fowl every
day in the year and I know no place in the world that can
match it.

The briefing sheet is designed to encourage students to record their
own questions during their initial examination of the sources. This is done to
make transparent any difficulties the students might encounter with the
sources, and to encourage them to generate their own questions as part of
the longer-term goal of developing their independent learning strategies.
After their initial perusal of the sources and the recording of their own ques-
tions, the students are asked to respond to their teacher’s questions. It is
useful to explain to the students that these questions may well look similar
to those they have raised themselves, demonstrating that questions are not
necessarily the special province of the teacher. Normally the teacher will
promise to collate the questions raised by the students and pursue answers
to them in the following session. Students may raise the point that none of
the sources directly record the thoughts of the native population at the time;
this creates the opportunity to ask the students to think about why that is
and what those thoughts might have been.

Students’ written responses to the teacher’s questions are used to pro-
vide the teacher first with an understanding of the students’ preconceptions
about evidence, and second with an opportunity to begin a learning dia-
logue about the nature of these sources and their potential as evidence (see
questions 1, 2, 3, and 4). In addition, the questions provide a means to
support the first steps in developing students’ understanding of the beliefs
that influenced the Pilgrims’ actions (see questions 5 and 6). These ques-
tions are simply examples, and there are many other ways in which the
selected sources could be used to both diagnose and develop students’
thinking.
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Teacher Question 1.

The first textbook writer describes the Mayflower’s arrival.
He tells us that “a small storm-battered English vessel rounded
the tip of Cape Cod.” Source 2 is a painting showing the May-
flower arriving at Cape Cod. We know that when the ship’s
master sailed it back to England, it quickly fell into disrepair
and rotted. So how would the person painting the picture in
Source 2 have been able to work out what the Mayflower
looked like?

What is this question trying to find out about students’ exist-
ing understanding?

The question is designed to check whether students understand
that

(a) The painter is not an eyewitness to the arrival of the May-
flower.

(b) There was a time difference between the source and the
event.

(c) The Mayflower was not available to the painter as a relic from
the time.

The question also probes whether students understand the ways in
which the painter might have knowledge of the Mayflower, and
whether they see the painting as providing direct information about
the arrival of the Mayflower or as evidence of its significance to later
generations.

What is this question trying to encourage students to reflect
on as a means of developing their understanding?

The question is trying to develop students’ understanding of evi-
dence by encouraging them to see:

(a) That the painting is better evidence of the significance than
the fact of the Mayflower’s arrival.

(b) That the absence of relic evidence or of trustworthy descrip-
tions by eyewitnesses is not an insoluble problem. We can find
good grounds for saying what the Mayflower could not have looked
like and for working out its probable appearance.

(c) That it is possible to work out the extent to which the repre-
sentation of the Mayflower should be trusted by checking whether
it is typical of ships of the period.



PUTTING PRINCIPLES INTO PRACTICE: TEACHING AND PLANNING 93

The responses of two particular groups of students—aged 12 and 15—
to some of the questions exemplify the kinds of moves students make. (If no
age is given for a quotation, the example comes from the younger group.)

You need to be able to see for yourself.

Simon assumed that the painter might have seen the Mayflower before it
left England, ignoring the time gap between the painting and the event it
depicted. He claimed that “the person who drew the picture knew what the
boat looked like because he might have seen it in the port before she set sail
for America.” Jennifer, recognizing a time difference, believed there would
still be something left of the Mayflower, and was convinced that “the person
painting the picture in Source 2 was able to work out what the Mayflower
looked like by visiting the remains.” Some 12-year-olds saw that the painter
could not have been an eyewitness, but argued that it was therefore not
possible to know what the ship looked like. As Adam explained, “The per-
son painting Source 2 wouldn’t have known what the Mayflower had looked
like as he wasn’t even there.”

If you weren’t there to see for yourself, then you need access
to someone who was.

Typically, many students felt the need to connect the painter with the
subject matter of the painting by creating a direct link with an eyewitness.
Peter said, ”The painter could have got the information from a person who
actually saw the Mayflower.” In saying this, however, Peter stretched the age
of the possible witness to an improbable extent to accommodate his think-
ing, while simultaneously shrinking the amount of time that passed between
1620 and the production of the painting in 1882. “Since it was a hundred
years after, there may have been people alive from the vessel to describe it.”
The importance to some students of an eyewitness as a way of knowing
about the past is clearly considerable.

Contact could be maintained with the eyewitness by means of
knowledge handed down through the generations.

Students can, of course, be more realistic about the time difference.
Elliot pointed out that the painting “was painted 262 years after the voyage.”
He looked for a different kind of link to the original witness, the handing
down of knowledge within a linear sequence. He suggested, “It must have
been told by the voyagers to their children, and then to their children, and
then to their children, what it looked like.” He recognized that this might
have created difficulties for the artist and claimed, “The painter is probably
drawing partly from what he’s been told and partly from his imagination.” In
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a similar vein, Edward recognized the difficulty of both a drawing of the
Mayflower surviving over a long period of time and this kind of information
being available as oral evidence over such a long period. He wrote:

I don’t think he could have [worked out what the Mayflower
looked like]. The only way he could was if there was a
drawing that had remained for over 250 years which is
unlikely. It also says that the artist painted it in 1882 so it
couldn’t have been spread about by word of mouth.

In recognizing the problems, however, Edward provided no solution for
how we might check the appearance of the Mayflower and thus the accu-
racy of the information in the painting. The absence of a direct link and
uncertainties of transmission make a determination of accuracy difficult.

You can use a scissors-and-paste approach.

When faced with the difficulties of direct access or transmission error,
many students operate with a scissors-and-paste approach to piece together
what is available and what they can trust. Robert explained that “the person
who painted it knew what the Mayflower looked like because another artist
had probably provided it in Britain and he altered the angle and scenery.”
He was working with the idea that the picture of the Mayflower needs to be
an exact copy of its arrival in the bay, almost a photograph of the event, and
saw the possibility of piecing information together to produce this result.
Robert believed that the details of the ship might have been available to the
artist through a previous picture of the Mayflower in England, but that the
American painter would have been able to create the setting needed to
portray this event, perhaps from his own personal geographical knowledge.

You have to work it out from other sources or knowledge avail-
able to you.

The awareness of a broader range of records available to the historian
can help students recognize that we are not left totally helpless without
eyewitnesses (or indeed, as some believe, without the recovery of the May-
flower itself). Julie, aged 15, suggested, “The artist may have studied pictures
of other early seventeenth-century ships and drawn one. The painter might
have incorporated knowledge from these into his painting.” Melanie, also
15, claimed in her written answer to this question, “There would have been
blueprints, paintings and maybe even a sister ship to the Mayflower.”

Students’ need for a direct link with the events, however, can remain
very strong. Peter was particularly keen on having access to something tan-
gible from the period.
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Peter They have this age testing machine and they
can test how old things are.

Teacher What would they be testing with that?

Peter Maybe things on the ship.

Matthew Yes, but then that would only tell us when it
was manufactured and not when it circled
round Cape Cod, and it still wouldn’t tell us
what it looked like.

Peter Well that would be in William Bradford’s diary.

Matthew I think it was based on what was probably a
regular design and all that would have
changed was mast shapes so it could have
been like a regular ship.

Peter The archaeologists might have got it up from
the sea, with all sorts of cranes and things.

Matthew But it had rotted.

Peter Well the basic shape might be there just not all
the fine details.

Even when he came under pressure from his teacher and Matthew,
Peter remained convinced that the recovery of the ship or a direct descrip-
tion of it is essential. He was clearly familiar with the way in which science,
archaeology, and technology might assist the historian.

Teacher Question 2.

In Source 3, William Bradford is talking about the first people
who went ashore. He tells us that it wasn’t until they had
“marched about a mile by the seaside” that “they spotted five
or six persons with a dog coming towards them.” He tells us
they “fled and ran away into the woods, and the English fol-
lowed them.” But Source 4 shows the Native Americans wait-
ing on the shore to meet them. How do I solve this confusion?

What is this question trying to find out about students’ exist-
ing understanding?

The question explores whether students are making decisions sim-
ply on the basis of whether someone was there or not (Bradford
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was, the artist wasn’t), or they understand that people’s intentions
in producing the sources also need to be taken into account.

What is this question trying to encourage students to reflect
on as a means of developing their understanding?

The question is designed to encourage students to reflect on:
(a) Whether, and under what circumstances, the accuracy of the

picture matters.
(b) What the artist was trying to portray about the encounter

between the Pilgrims and the Native Americans.
(c) Whether the encounter portrayed by Bradford would have

been described in the same way by the native people at the time.

Trust the source who was in a position to know.

We must expect many students, convinced of the need for an eyewit-
ness, to respond in a direct and uncomplicated way to this question. George,
for example, wrote, “William Bradford was there and the painter wasn’t.”
Given the claim being made, this is a perfectly justifiable answer. Jack also
made the point about Bradford being in a position to know, and explained
the conflicting information in the painting by pointing out that stories change
over time:

I think that Source 3 was right, as he was one of the leaders
of the Pilgrims. In his own personal diary he was probably
writing the events that happened when they happened,
whereas Source 4 was drawn almost 200 years after the
events. Over 200 years stories change.

These students did not question whether Bradford was among the ac-
tual party that first went ashore. They made the assumption that he was
there. The idea of “being there” is often generalized by students and taken
as sufficient to validate a great deal. Sometimes they use “from the time”
regardless of the distance between the person providing testimony and the
event itself. In this case, however, the students made a legitimate distinction.

You need to understand the purpose of the artist.

In pursuing this question with students, an important goal is to help
them understand that the painting is not meant to be a photographic image
of an exact moment in time, and that although it is “just a painting,” it can
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often yield information about how past events were seen by later genera-
tions.

Some 12-year-olds considered the artist’s purpose in relation to the in-
formation contained in the painting. Daniel, for example, said, “I think that
the Indians are in the picture to show that they were there first, and that they
were watching for them even if they weren’t seen.” Daniel’s response is
interesting in two ways. First, it suggests a specific purpose on the part of
the artist, showing that Daniel was aware that this intent must be considered
if the painting is to be understood. Second, the response introduced a per-
spective not yet suggested by the text extracts and the sources, nor at this
stage by the questions. Daniel was sensitive to the position of the Native
Americans. In the questions he had recorded when first looking at the sources,
he had written about the painting (Source 4), “Were the Indians watching
them from the land?” About John Pory’s testimony (Source 5), he raised the
question, “Why didn’t the native Indians attack them?”

When Adam began to muse on the production of both paintings (Sources
2 and 4) in a follow-up classroom discussion, the teacher used Daniel’s
written response to explore the issue further.

Adam It’s funny that it’s done in Massachusetts the
same as the other one.

Teacher Yes. Let me just run this past you all and see
what you think about this. This answer by
someone in your class says, “In this picture I
think the Indians are in the picture to show that
they were there first, and that they were
watching for them, even if they weren’t seen.”

Matthew recognized the point being made when the teacher confronted
the students with Daniel’s response, and he elaborated on it. Although both
Matthew and Daniel were making assumptions about the artist’s actual in-
tentions, they clearly recognized that the artist was not necessarily attempt-
ing a historical reconstruction.

Matthew I think that’s very good ’cos art isn’t always
total fact it’s usually symbolism because you
couldn’t put tiny men on there showing that
they are far away, it could very well symbolize,
yeah, that these Native Americans are here
first and its not really the Pilgrims’ land at all.

Adam I think the Indians would be very territorial, like
protect their land and their territories and say,
like, “This is my territory, go away!”
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The teacher probed the students’ ideas further by getting them to con-
sider the possibility that the painting might provide evidence of the impor-
tance of the event to future generations, and might not necessarily be an
attempt to recognize the Native Americans’ first claim to the land.

Teacher You remember the part where we said that
those who arrived on the Mayflower become
known as the Pilgrim Fathers later on. And that
kind of means that the painting might really be
trying to say these people are really important
because they established, it was the beginning,
they are the “Fathers” who made this part of
America what it was at the time the painting
was done. So what might the artist want to
portray about these people—the Pilgrim
Fathers? Would the painter be concerned to
portray the Native Americans’ position? Would
the historical accuracy matter that much in this
case?

Matthew Like they would want to show them as great
because they founded the white part of
America.

Adam Maybe it was to make the Pilgrims look good.

Peter Yeah, make the Pilgrims look like they are
fending off the Indians, make the Pilgrims look
good.

Matthew took the point further, and an awareness of past attitudes and
perspectives came into play.

Matthew I think this painting could be somewhat racial
and that they are kind of trying to say that
these Pilgrims are the white fathers and that
the Native Americans shouldn’t be there, its
just for these people which isn’t fair, its very
racial, but that’s what could be portrayed—it
could be a racial statement.

Teacher That’s interesting, but what would we need to
know to interpret the painting? It may not have
been intended to be racial, but merely to focus
on the arrival of the Pilgrims, and the Native
Americans are just there as part of the scenery.
The racial aspect may be more unconscious
than we are supposing, or the artist may have
wanted to reflect this as a peaceful encounter.
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Adam You would need to know about the painter
who actually painted it. You need some
background information.

Peter Then we could find out the truth about what
it’s saying.

Teacher Would the information you need be just
information about the painter? What else
would you need to know?

Matthew What period of time it was painted and
whereabouts it was painted. They could be
changed with society, like giving in to society
[meaning agreeing with predominant ideas?]
because, like, most people in Salem, Massa-
chusetts, which is where this was painted,
were white, so he wanted to portray the white
people as the great greats . . . or however you
want to interpret it.

Teacher There was some very good thinking there
actually, and I think you got us on to that point,
didn’t you, Matthew, about symbolism, and
therefore what you’re saying to me seems to
be that the painting is not supposed to be
exactly what happened at the time but may be
more about what it means to people later on,
and at a particular time and place.

In this excerpt, the teacher sought to discover whether Matthew was
close to adopting a more subtle approach than his initial position had sug-
gested, and his response showed a growing awareness of the complexities
of interpreting the intentions of the painter and the kind of knowledge one
needs about the society in which the painter was working (see Box 3-2).
This is a strong hint that Matthew will be able to use any new information
and source materials judiciously and to understand the significance of the
Mayflower’s arrival for future generations. The materials to be used in future
lessons with these particular students will need to explore the different rela-
tionships among groups of people at the time and the complexities of the
Mayflower legacy.

Teacher Question 3.

The writer of Source 5 tells us, “The harbor is good for ship-
ping both small and great, being landlocked on all sides” and
“The town is seated on the ascent of a hill.” How did the writer
know this?
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The disposition to interpret historical data with reference to the social contexts
within which they were produced and intended to be used is slow to develop and,
even when developed, may be difficult to activate. Working with a group of “col-
lege-bound” seniors who “represented the successes of our educational system,”
Sam Wineburg found that they were disposed to take at face value a “patently
polemical” account of the skirmish between British soldiers and colonial farmers
at Lexington Green in 1775. Wineburg concludes that these able seniors “failed to
see the text as a social instrument skillfully crafted to achieve a social end.”7

It is necessary to account for the disparity in ideas and assumptions between
the “college-bound” seniors and the more sophisticated sixth graders who en-
gaged with the Pilgrim Fathers materials and tasks. Three factors are significant in
this connection. First, it may be easier for students to construe pictorial rather than
textual sources within a supplied or inferred context of social meanings and inten-
tions. Second, the text used by Wineburg carried the received authority of a text-
book account and, as Wineburg notes, “the textbook, not the eyewitness accounts,
emerged as the primary source.” Teaching of the sixth graders, on the other hand,
had systematically diminished the credibility of the Mayflower painting by pointing
out that the artists could not possibly have witnessed the events depicted. Third,
and perhaps most significant, the teachers who worked with the Pilgrim Fathers
materials and tasks had the development of students’ understanding of evidence
concepts as their principal objective. The seniors, as Wineburg observes, should
not be “overly” criticized since “these aspects of text, while central to the skilled
reading of history, are rarely addressed in school curricula.”

BOX 3-2 Interpreting Sources in Context

Teacher Question 4.

John Pory, the writer of Source 5, tells us that when the Pil-
grims reached the harbor of Cape Cod, they found “an old
town, which several years before had been abandoned by the
Indians.” The writer was not one of the people who arrived
on the Mayflower, so how did he know this?

What are these questions trying to find out about students’
existing understanding?

These two questions work together. They are designed to check
whether students understand that “being in a position to know” is
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not just a matter of whether someone was there at the time, but also
depends on the kind of knowledge we are asking about.

What are these questions trying to encourage students to re-
flect on as a means of developing their understanding?

The questions encourage students to:
(a) Recognize that different kinds of information may be given in

people’s testimony.
(b) Think about how these differences affect the way we can

verify testimony (using other sources in some cases, and judging
likelihood and plausibility in others).

(c) Think about why the circumstances at Plymouth might be
important to John Pory and perhaps speculate about the nature of
his visit.

These kinds of reflections can encourage students to move beyond
the face value of testimony and begin to draw inferences, getting
sources to yield what they did not set out to reveal.

You need to make distinctions among kinds of claims.

Pory’s claim in Source 5 that “the harbor is good for shipping both small
and great, being landlocked on all sides” and that “the town is seated on the
ascent of a hill” are based on his own observation of the geographic advan-
tages of Plymouth during his visit in 1622. Students who have become famil-
iar with source work are likely to look at the source caption and recognize
this. Pory’s claim that the town was one that “several years before had been
abandoned by the Indians” is, however, of a different kind, and may well
have rested on word of mouth from either the native population or more
likely the Pilgrims’ own story of their arrival, told to him during his visit. The
circumstances at Plymouth may indeed have reached him by word of mouth
at Jamestown, but his written account of Plymouth is in the context of his
visit. The advantages of Plymouth’s geographic location and the Pilgrims’
relationships with the Native Americans would no doubt have been a sub-
ject of discussion between someone from Jamestown and the leaders of the
Plymouth settlement, and Pory’s account helps the teacher introduce stu-
dents to the importance of these advantages for the Plymouth settlers.

We should expect many 12-year-olds, and perhaps most 15-year-olds, to
be able to distinguish between the different claims addressed in these two
questions. Jonathan’s written answers demonstrated his ability to make this
distinction:
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Question 3: The writer of Source 5 would know this because
he visited Plymouth two years after the Pilgrims’ settlement
and not many changes of this kind would have happened.

Question 4: John Pory probably asked William Bradford
about this because they were both in Plymouth in the same
decade.

Jonathan understood that Plymouth’s geography was unlikely to change
quickly and that Pory would have been able to see these features for him-
self. He was also aware, like many in his age group, that Pory’s knowledge
base for the second claim might have depended on what others at Plymouth
had told him.

Generalizing.

Some students will suggest William Bradford’s journal as the basis for
John Pory’s knowledge of Plymouth and pay little attention to the informa-
tion attached to Source 5 about the visit to Plymouth in 1622, or decide that
this information is not relevant to the question. David’s responses are illus-
trative:

Question 3: The writer would have known this by the
personal diary of William Bradford which they found.

Question 4: He could have known this because of the diary
of William Bradford.

Students like David may not take into account that Bradford’s journal
was not published until 1650, and may therefore not ask themselves whether
Bradford would have shown Pory any records he had made or whether,
during a visit in the circumstances of early settlement, these things would
have been an important matter for discussion between the two men (and
indeed others). David did not get behind this source to the circumstances
surrounding its production. If he had looked at the source caption, he did
not use it to inform his response.

Another kind of response is to recognize that a site visit could provide
this kind of evidence, but not to think about the difference between the
geographic features of the site, which are unlikely to have deteriorated, and
the signs of an abandoned town, which may well have been obliterated by
the activities of the 2 years between the arrival of the Pilgrims and Pory’s
visit. The concept of “town” here is also likely to be important: if students
imagine a Native American settlement as consisting of brick or stone build-
ings, an answer such as Vincent’s makes more sense.
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Question 3: The writer might have known this by going to
the site and finding ruins.

Question 4: This question has the same answer as question 3.

Vincent was presumably assuming that Patuxet (the name used by the
native population for the abandoned town on which the Plymouth Planta-
tion was built) would still have been visible in the way the ruins of a modern
town might be. Although there may have been signs of a settlement, it is
more plausible that the abandoned town would have been an important
topic of the conversations that took place between Pory and the settlers,
particularly given the comparative advantage an “abandoned town” had for
the Pilgrims in their relationship with the native population.

If we return to one of the groups of students reflecting on these ques-
tions with their teacher and look at a substantial portion of their discussion,
the importance of understanding exactly what students mean becomes very
clear. Unless we know the distinctions that matter here—the ones that indi-
cate crucial steps in students’ understanding—we can blur students’ ideas
and fail to help them move forward.

In discussion with his teacher, Peter—forever enthusiastic—suggested a
range of possible sources that Pory might have used as a basis for his claims,
while Matthew tried to pin down the circumstances of the visit, and made a
distinction between what Pory would have been able to see for himself and
what he might have been told by the people of Plymouth. Adam challenged
Pory’s second claim by suggesting it rested on hearsay. Their teacher trig-
gered this discussion by focusing on questions 3 and 4.

Teacher We need to look at Source 5. It says the harbor
is good for shipping both small and great,
being landlocked on all sides. Some people
asked about what landlocked meant. Do you
understand what that means now?

All Yes.

Teacher Pory also tells us that the town is seated on the
ascent of a hill. And one question there is how
does he know that? And a further question is
that he also tells us that when the Pilgrims
reached the harbor of Cape Cod they found an
old town, which several years before had been
abandoned by the Indians. So I want to know
how the writer knew that, because he wasn’t
on the Mayflower. Can you explain each of
those to me?



104 HOW STUDENTS LEARN: HISTORY IN THE CLASSROOM

Peter Well maybe for the second one it could have
been that the leader, William Bradford, maybe
it was in his journal, and maybe also that he’s
been to see that place and he has found signs
of markings, like Indian words and statues of
their gods.

Matthew Yeah because it says here “Written by John
Pory an official from the settlement at
Jamestown, further south in Virginia, after he
has visited Plymouth in 1622,” so he had
actually visited, so that explains the geographi-
cal point, and then it could have been from
word of mouth from the people who were
actually on the Mayflower so they are talking
to each other. That’s how he finds out about
the old town that several years had been
abandoned by the Indians.

Adam Yeah, that’s probably true but that doesn’t
make his source as reliable as it could be then,
because his source is not based on pure facts,
it’s probably not based on pure fact, it’s
probably based on word of mouth and what
he’s been told.

Perhaps Adam used the phrase “not based on pure facts” in an attempt
to distinguish between the physical environment available for all to see, and
as a consequence easily testable, and the kind of knowledge that comes
secondhand to someone, resting on another’s word about what he or she
had seen or heard. The teacher checked the students’ understanding of this
distinction, but it was Matthew who responded.

Teacher Which one of these things can you say that
for? Both of those questions?

Matthew No. I believe like I said before, that where it
says the harbor is good for shipping both
small and great, being landlocked on both
sides, you can see through your eyes, so you
don’t need to be told about that, but in order to
be told about the old town it has to have been
by word of mouth which can sometimes be
twisted like we managed to find that paintings
can be twisted by social . . . surroundings.

Peter Even if he did get it by word of mouth people
do twist the truth as you go along.

Adam Like Pass it on.
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This discussion goes beyond the parameters of questions 3 and 4 in a
search for some general principles. Matthew’s notion of “twisting the truth”
appears to appeal to a familiar, everyday understanding of intentional distor-
tion, but his reference to “social surroundings” may indicate an understand-
ing that “twisting” may be less deliberate. Adam’s analogy with the game
Pass it on reflects the same ambiguity between transmission errors as a con-
sequence of the very nature of word-of-mouth information and deliberate
distortion (although Peter’s comment was clearly about the latter).

The teacher explored how far the students could think more precisely
about intentions, because the second of John Pory’s claims is not of the sort
likely to have come about through a deliberate attempt to twist the truth.
The students nevertheless continued to pursue the issue of deliberate distor-
tion.

Teacher If you are going to use the word “twist,” can
you make distinctions between the kind of
things people are likely to twist and those they
aren’t?

Peter If it was something important and they didn’t
want anybody to find out about it they twist it
so they think it was something else.

Matthew It depends who they are supporting, um, say
the Pilgrims did something really bad. Say
they murdered Indians while they were
sleeping just out of want for their land, they
would make it sound a bit better, like that the
Indians did so many horrible things to them
that they didn’t actually do, so that it was even
a good deed to go and murder them while they
were sleeping.

Adam They wouldn’t even say they were sleeping.
They would say the Indians came to them so
they killed them in battle and so they were
great warriors.

These speculations brought Peter back to the sources they were examining.
Despite the previous discussion about the status of the painting in Source 4,
he used this source as a stimulus to articulate his concerns about the Native
American perspective.

Peter Yeah, and you know where it says abandoned
by the Indians, well in Source 4 it shows that
the Indians were actually still there, so whether
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maybe the Indians were slaughtered or maybe
they were hiding, because they did not want
those people to come over and take the land
and change their cultures, and then these
people just found their land, and they are
threatened by it, and they think they are going
to take over their culture.

Adam Yeah, leading on from what Matt says about
the way they exaggerate things, it says they
was abandoned but the people could have
done, like, invaded their culture and slaugh-
tered them, and therefore they would say there
were no Indians there so it was abandoned to
make them sound, like, not so bad.

Matthew So it would be to look like they were great.

Peter Supposedly.

Matthew In American people’s eyes they were, because
they founded their land and would see it as
their land.

The students had begun to think of the general context of what an
encounter of this kind might mean to the Native Americans, and as a conse-
quence found it difficult to believe in the convenience of the “abandoned”
town (all the more convenient if the “town” is still conceived of as a collec-
tion of permanent structures in which the new arrivals could find shelter).
They also believed that the Pilgrims would have felt some need to justify
their claim to Plymouth. At this point, the students, as well as their teacher,
had begun to recognize the need for material that would enable some of
these questions and assumptions to be pursued.

Teacher Well, before you can answer all those kinds of
questions you need to know some more things
perhaps, some more background information.

All Yeah.

Teacher But just let me get clear what you are saying
that you have got in this source written by
John Pory. You made the important point
didn’t you, that some things he could have
seen for himself, but that he would not have
been able to see for himself the bit about the
abandoned town, and you are saying he might
have heard about that from the people who
were there. The point then that Matthew is
making is that it would be difficult to see that
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first hand, and that he would be relying on the
Pilgrims for that information, and so Matthew
is just saying that there might be an issue here,
that he might be a bit worried about doing that
and that it may not be quite right. It may be
that if we know something more about John
Pory and the Pilgrims we can think about this
point further.

You need to get behind the record to the concerns of the people
who produced them.

The teacher then pursued the further objective involved in these ques-
tions—that concerned with thinking about the kinds of things particular
people might record. An attempt was made to encourage the students to
consider why the advantages at Plymouth had a particular resonance with
John Pory.

Teacher Why is Pory concerned with these things
anyway, this kind of information? Why would
he record this kind of information? If I told you
that he came from the settlement farther
south, and that the settlement farther south,
when they got to America there wasn’t any
abandoned land and they were having a lot of
problems. So why might that make him want
to mention this?

Adam Probably to let his settlement know, and they
have probably got friends and allies, that they
have got abandoned land, and maybe they
could share with those who haven’t actually
got any.

It is clear that the knowledge base with which students are working is
unlikely to be sufficient to pursue this matter further at this stage. The need
for additional information exists on a more or less continuous basis in his-
tory lessons. It is vital in this task not to crowd out the evidence objectives
by providing too many factual details too soon, but at this point it is difficult
to advance understanding without further contextual understanding. Some
details can be provided without risk, as the students will be in a position to
assimilate them and use them effectively to shed light on the problems they
have already identified. These details have a context that will give them
meaning.
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The teacher, aware of these difficulties and of the overall scheme of
work, was able to tell the students that a comparative study of the settle-
ments at Plymouth and Jamestown would be part of their future work and
would shed light on John Pory’s concerns. In addition, she explained that
the following lesson would use further source material to explore other
matters: the circumstances of the abandoned town; the relationship between
the Pilgrims and the Wampanoags, who lived in the immediate area; and the
changing nature of the relationships between the settlers and the native
populations with the arrival of a Mr. Weston and his attempt to create a
settlement at Wessagusett. The teacher also knew (but did not tell the stu-
dents at this time) that they would be learning about the changes in these
relationships in the context of patterns of white penetration into the lands
populated by the native peoples of the eastern lands of North America over
a longer time span.

Understanding what is likely to get recorded and under what
circumstances: diaries.

Students in the sixth, seventh, and eighth grades tend to be quite aware
that we depend on traces from the past in order to say anything about it; as
we have seen, however, they are likely to assume that if this testimony is less
than accurate, we will face difficulty. When testimony is still the main idea in
the students’ toolkit, one of the first things they suggest as a good source for
historians is a diary. The following exchange indicates why.

Teacher Perhaps we could come back to the things in
William Bradford’s diary because several
people in the class asked how Bradford knew
the Native Americans—Bradford calls them
barbarians—were ready to fill them full of
arrows. The question people wrote down when
they were looking at this source was, “How did
he know they were ready to do this?” So what
I want you to do is to try to shed some light on
this for us.

Adam It’s very strange really because you know when
you write a diary, no one would lie to a diary
because that would be just like lying to
yourself. It would be a ridiculous thing to do.

Peter I think he might lie in his diary, maybe because
he knows that one day or another, people
some how or another are going to find his
diary, and he wants to, maybe, twist this so
that people hear what he wants them to think.
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The teacher had returned to William Bradford’s testimony to encourage
the students to consider how the language of such a text can help us recre-
ate the circumstances in which records are made and hence the subject
matter that is likely to be recorded, and to examine the further question of
how a diary becomes a publication. The aim was to see how far the students
were thinking beyond the simplistic dichotomy of “telling the truth” or “ly-
ing” that came out in the exchange between Adam and Peter. The students
were aware that we can make moves that go beyond testimony, but it is
precisely testimony that they confronted in this material. The teaching objec-
tive was therefore to help them see that even when we have testimony, we
have to use it in quite subtle ways. In other words, we have to use it as
evidence, not just as testimony. This means thinking about how the testi-
mony arose. The teacher explored the students’ ideas to provide herself with
an informed starting point for the next exercise.

Teacher What about us thinking about the way diaries
get written, we need to think about the circum-
stances in which diaries get written.

Matthew Yes, because you’re not exactly, it’s like talking
to a really good friend, because mostly people
start it off like “Dear Diary” so they’re not
really leaving it for someone else to find. It’s
just like having someone to talk to, because I
know they are not there, but you just feel
better after you have written it down.

Teacher Do you think people might write their diary up
every day?

Adam Well some people do, like Anne Frank, she did.

Teacher But she was in a room with nothing else—she
was restricted in what else she could be doing.
In what sort of circumstances might people not
write their diary up every day?

Matthew Oh, if there is something exciting happening
they probably wouldn’t do it so when they
were on the ship then he probably would have
filled it in, but by the time they had landed he
would probably be so excited he wouldn’t, that
would be the last thing on his mind, he
probably wouldn’t be able to do those things.

Adam And if he did it would be like dear diary too
excited to write we just did this and that, right
see you tomorrow, so he might have written it
a lot later.
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Teacher It would be nice to go into this further, but we
are not going to have time to do that today.
But what I was trying to do was to get you to
think about how when the Pilgrims arrived
they had an awful lot of things to cope with
because they had had this dreadful journey,
they were exhausted, and clearly some of
them are very ill or dying, and maybe William
Bradford was very busy when they arrived. He
might not have had time to write up his diary
on a regular basis, and if you write a diary later
on, what are you likely to write about com-
pared with if you write a diary every day?

Adam Pick out all the good points, because if you
have had some really down times you don’t
want to make it worse by writing about the bad
things.

Peter And I think if you write in your diary every day
you just write what happened today, and if
you, say, write up a date a week later you
think, “Wait a minute! I’ll only write this,”
because you don’t want people going through
your stuff and finding this. “I want them to find
good things.”

Teacher Do you think he is just writing this out person-
ally for his own benefit? I mean this is a man
who eventually becomes the Governor of
Plymouth.

Matthew I suppose it could be for both, because person-
ally, like, maybe other people know what
Indians are really like, and maybe they all put
their ideas and extracts into this diary so that it
can be passed down so that everyone can
remember the story of the Pilgrims and we do
now. Maybe they had plans so that everyone
would remember who they were and what
they did.

Adam And how great they were.

Teacher So in the extract you were looking at, by
William Bradford, Source 1, what does it say at
the top?

Adam I think he sort of writes it in the past tense, he
says “having arrived.”
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Teacher And what does it actually say about the
source?

Adam Personal journal finished in 1650, and they
arrived in 1620, so that’s, like, a 30-year diary.

Peter I don’t think anyone would have a 30-year
diary.

Matthew Well if he is a great man . . .

Peter Maybe it’s not for personal use, because for
personal use it would be more like a child, and
when you are 20 you are more mature, so you
wouldn’t really bother. Not many adults keep
diaries for personal use, so maybe he just
thought, “Oh, I will leave it for future genera-
tions.”

Teacher If you know you are a small group of people
who have gone all the way across the Atlantic
Ocean creating a new settlement . . .

Matthew Yeah, you are going to want people to take
notice of it. If there is a small number they
might not even survive, or like reproduce and
they are going to want other people who come
to the land to think, “Oh my God, these people
were great,” and, like, other people from the
past, like, think that if you won a battle God
was on your side so they might think, “Oh my
God, God was on their side so he must be the
true God!,” so he is increasing their religion
which would still make their name.

Peter And it may even have worked because like in
America they have carved out of rock the
foreheads of the forefathers so it probably
even worked.

The teacher was aware that in future lessons, her students would need
to develop more subtle understandings about the nature of diary accounts,
their relationship to record keeping, and the level of awareness of authors of
these accounts with respect to the possible legacies they were creating. In
particular, the students would need to understand the responsibility that
William Bradford, as governor of a settlement of this nature, would have had
for keeping particular kinds of records. Within this context, they would need
to be able to differentiate, even within the same document, among different
kinds of information and whether the document is being used as a record or
relic source.
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Ideas, Beliefs, and Attitudes

Although the focus of the Pilgrims’ task as discussed here is on the
concept of evidence, an important connection exists between that concept
and some aspects of empathy. If students are to know what a source may be
used to argue, they need to understand two closely related things. First, they
must understand what sort of thing a source is as an object that has social
meaning at a particular time—in this case a diary (or, more precisely, a
journal). Second, they must be able to begin to understand the ways of
seeing the world, and the associated values, manifested by the source.

In the above discussion, Matthew introduced an opportunity to consider
how religious beliefs, particularly that of “providence,” actually work. In
explaining that winning a battle would actually be evidence of God being
on your side, Matthew also suggested that successes of this kind would
reinforce such a belief. This is a complex understanding, and it will be
valuable to him when in further studies he is asked to give explanations of
some of the later actions of the European settlers on the eastern coast of
America. The Pilgrims’ task contains two questions that would provide an
introduction to such later work. The first is a simple question asking stu-
dents to use Sources 1 and 5 to identify who the Pilgrims believed was
helping them when they arrived at Cape Cod.

Teacher Question 5.

The writer of Source 1 and the writer of Source 5 seem to
share the same beliefs about who was helping the Pilgrims
when they arrived at Cape Cod. Who did they think was help-
ing them?

What is this question trying to find out about students’ exist-
ing understanding?

This question explores students’ understanding of:
(a) The distinction between how people at the time would ex-

plain the advantages they had and how we might explain these
things now.

(b) How Bradford’s and Pory’s beliefs provided them with an
explanation of their circumstances.

What is this question trying to encourage students to reflect
on as a means of developing their understanding?
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The question encourages students to:
(a) Reflect on how the interrogation of sources can give us access

to understandings beyond the immediate information that the source
intended to provide.

(b) Think about the distinction between the way in which the
Pilgrim Fathers would have explained what was happening and the
way in which we might explain it.

This question is also an opportunity to introduce the specific idea of
“providence.”

A majority of sixth graders were able to identify God as the agency the
Pilgrims believed was helping them, but another response we are likely to
encounter is that it was the Native Americans who really helped the settlers.
In many ways, students are quite right to say this (and indeed in the evi-
dence work that followed, the students were introduced to Squanto), but the
issue here was how the Pilgrims would have seen things, and in particular
how they would have interpreted the help they received from the Native
Americans as the manifestation of divine providence. Later the students of-
ten emphasized the practical support the Pilgrims received as a consequence
of either the good will of the native population or the food stores of the
native population that the Pilgrims found. Sean, for example, wrote, “I think
the Indians helped them because why would they suddenly have a grudge
with someone they just met.” This response was illuminating because it
turned the question into one about who he thought provided the help,
rather than one about who the writers of the sources thought was helping.
In claiming that “in Source 1 and 5 they have the Native Americans helping
them,” Colin was being less than precise, but appeared to have picked up
the discovery of the supplies from Source 3, together with Pory’s remarks to
the effect that the native population made no objection to the settlement in
Plymouth, and to have seen this as important practical help.

Other students made the distinction between our way of seeing things
and the beliefs of people such as Bradford and Pory. These students were
ready to recognize that it is past ideas that count here. Alex drew inferences
from the religious practices of the Pilgrims to their beliefs. She wrote, “They
thought God was helping them as they blessed God when they arrived.”
Janine, aged 15, saw as a routine consequence of their religion that they
would believe the help was from God: “They thought that God was helping
them because the Pilgrims were supposed to be very religious so God would
help them.” In discussion with Peter, Matthew, and Adam, the teacher ex-
plored this question further.
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Matthew I think that is pretty obvious. I’m sure they
believed it was God helping them; it’s quite
easy to figure that out. [He then quoted
Bradford.] “They fell upon their knees and
blessed God who had delivered them.”

Adam And then it says, backing up Matt’s idea, in
Source 5, “After some accidents and mistakes
he stumbled on the harbor of Plymouth where
it pleased Almighty God who had better
provided for them than they could imagine.”

Teacher What do you think he meant by “than they
could imagine”?

Adam I think he means, like, they got better land than
him because they got an abandoned town, so
John Pory’s group in South Virginia didn’t
have that, so God had provided them better.

Peter And in those times most things were based
round religion, religion was very important in
those days.

Teacher What kind of religion is this that you are talking
about?

All Catholic? Christians?

Teacher Did you read the bottom of that page about the
Pilgrims? [pointing to the definition of Pilgrims
on the briefing sheet]

Adam Oh no. They’re Protestants, and they’re getting
away from the English church because they
don’t want to abide by their laws.

Teacher Do you know the word “providence”? If I said
people believed in “divine providence” would
you know what I meant? If I said you believe
that God lets you know whether what you are
doing is OK, would you know what I meant?

Adam Like in a vision?

Teacher What kind of things could you use to decide
how God is going to let you know?

Adam He could come to you in a dream.

Teacher What is God likely to do to people that please
him?

Matthew Give them good weather and be nice to them.

Adam Give them what they want.

Teacher So how do you know?
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Adam If you have got a good life.

Teacher Yes, if something good happens to you.

Adam Then you know.

Teacher How are you going to see that?

Adam As an act of God.

The teacher drew their attention to the particulars of the Pilgrims’ situation.

Teacher Right, so what about this abandoned village?

Matthew To them it’s like an act of God because its more
than they could have imagined possible.

Peter They might have said, like English kings, they
say, like God chose me to be king. So the
Pilgrims could be saying, well, God has told
me that I have to live here.

Teacher Question 6.

Why did religious people like the Pilgrims think they had the
right to take over land that wasn’t theirs?

What is this question trying to find out about students’ exist-
ing understanding?

This question explores the extent to which students:
(a) Make stereotypical assumptions about religious beliefs.
(b) Are able to use their understanding about the Pilgrims’ reli-

gious beliefs to explain the Pilgrims’ actions in this particular case.

What is this question trying to encourage students to reflect
on as a means of developing their understanding?

The question is designed to:
(a) Open up a discussion of the different ways in which past

events can be explained.
(b) Develop an understanding that the Pilgrims’ values and prac-

tices were not the same as ours and help explain what they did.

This question of how people see things is important for understanding
what to make of evidence and is central to any kind of empathy (whether



116 HOW STUDENTS LEARN: HISTORY IN THE CLASSROOM

understanding patterns of belief and values or explaining particular actions;
see Box 3-3). The Pilgrims’ task allows this understanding to be taken fur-
ther, and question 6 pursues one major thread, presenting students with a
paradox.

Students’ answers to question 6 revealed attempts to make what today
appears to be rather indefensible behavior less unpalatable. Sean explained:

The Pilgrims wanted to discover more land and find out
what the world looked like. They were not aiming to take
over land when they set off, they were just aiming to
discover more land and find out if the land around them was
inhabited or if they were the only people existing along with
other people they knew existed such as the French and
Scandinavians.

Sean actually avoided explaining the relevant action of the Pilgrims, or at
least justified it as not intentional, suggesting that the Pilgrims were in fact
part of a larger movement of people who were benign explorers.

In the small-group discussion we have been following, the teacher drew
the attention of Peter, Adam, and Matthew to this question.

Teacher Let’s think about this right they think they have
to take the land.

Adam They believe they had the right like Peter said,
because they needed to get away and after
some errors and accidents like they stumbled
across a harbor, whether it was because of the
wind or the backwardness of their ship’s
captain they did not arrive where they had
planned, so they therefore believed that God
did not want them to live where they had
planned, so whether it was the ship’s captain
or the wind, God changed it around, so that
instead they reached the harbor of Cape Cod,
so therefore they believed that God wanted
them to live there.

Peter took this argument further, suggesting they would need to justify
the action in terms of the Native Americans’ religious “failings,” and Matthew
was concerned that their religious beliefs should not go unrecognized. Pe-
ter, however, reinforced the point more precisely by talking about how the
Pilgrims might justify their action in their own terms, rather than according
to the way we would look at this situation now.
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A major step for young students of history is to recognize that they cannot rely on
our modern ways of thinking to explain why people in the past acted as they did.

In action research in U.K. schools carried out by Dickinson and Lee and by
Ashby and Lee, groups of three students in grades 5 to 8 were asked to explain
why the Anglo-Saxons used the ordeal to find out whether someone was guilty or
innocent of a crime.8  Their discussions were recorded on videotape.

Some students dismissed the ordeal as absurd, but others tried to make sense
of it by turning it from a form of trial into a method of punishment aimed at deter-
rence. Their reaction was that, given any reasonable—i.e., modern—ideas and val-
ues, it could not have been a trial, so it must have been something else. If it was so
deliberately unfair (by our standards), then it must have been doing what we would
do if we behaved like that. As one group of eighth graders said, “If this is as unfair
as we seem to make out it is, no one’s going to steal anything,” because they will
be “scared they’ll get caught.” Students thinking like this cease to think of the
ordeal as part of a trial, and reduce it to a form of deterrent. Some students slip into
calling the ordeal a “punishment.”

Another move made by students is to recognize that the Anglo-Saxons held
different religious beliefs from ours, but then to treat this as part of the problem:
the ordeal is the sort of absurd thing you would expect from their religion.

A few eighth graders, however, not only were able to use the different ideas
held by the Anglo-Saxons to explain why the ordeal took the form it did, but were
even prepared to switch perspective to judge present institutions in what they
thought of as Anglo-Saxon terms.

Tim They’d probably say that their system then, with God,
is better than ours, because, well people can muck
around with the truth, but God . . .

Lawrence But God doesn’t.

Tim They’d probably say theirs was better than ours.

BOX 3-3 Did People Think Like Us in the Past?

Peter They might have even thought that God was
punishing the Indians because the Indians
weren’t very religious.

Matthew Weren’t they, they had Gods, other Gods,
didn’t they?

Adam Yes, they had statues and things, totem poles
and things?
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Peter The Pilgrims could have said in, like, their
defense, that you have not been worshiping
the right God, so you have been bad, so you
can go away.

The Language of Sources, Interpretation, and
Other Perspectives

At the end of the discussion with Peter, Adam, and Matthew, their teacher
wanted them to consider more carefully the different ways in which actions
may be interpreted.

Teacher Do you think when Bradford talks of the group
of native people as “running away” that the
native people would have described it as
“running away”?

Adam I wouldn’t think so. I think they would say [sic]
it as “going back to your tribe to tell them what
was happening.”

Matthew To tell them.

Adam They might say, “We’ve got white people with
different ideas and a strange language. We
need back-up, we’ve got to get ready for these
people or otherwise they could change our
entire habitat our entire . . .”

Teacher So you are saying that if you don’t attack
someone as soon as they land and you go
away, you don’t have to see that as “running
away.” I know I’m probably putting words in
your mouth here, but would you see this kind
of “running away” as being scared or being
sensible?

Matthew Being sensible because like it says they were
greeted by five or six people with a dog, and
how are five or six people and a dog going to
take on the people with the firearms?

Peter Maybe they can sense, like, these people are
dangerous so it might be a mixture of both
really.

Teacher So sensible people have to work out what’s
going on before they make decisions?

Peter Well maybe it’s a mixture of being sensible and
being scared.
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Teacher Have you heard that expression, “Fools rush in
where angels fear to tread”?

Adam Yes. Angels are smart so they back off but
fools they rush in and get killed.

Teacher So this may have been not “running away” in
the way we might understand it, as it is
described, but making sure that they could
assess the situation in their own way in their
own time.

In the absence of testimony from the Native Americans, this conversation
about how to understand a relatively concrete and simple action opens up
the possibility of helping students think about the way our picture of the
actions of the Native Americans is mediated by the cultural assumptions of
the settlers.

The exploratory approach exemplified by this task and the ensuing
dialogue enables us to gauge our students’ understanding of historical evi-
dence, particularly their understanding of how to use testimony as evidence.
We can then engage more confidently in direct teaching, knowing that we
have a clearer understanding of the ideas with which particular students are
working. The evidence work was not, of course, detached from gaining
knowledge of the topic. In fact, the richness of the sources generated a great
deal of excitement and a wealth of questions. Students were keen to know
more about what happened: to understand the opportunities that were avail-
able to the Pilgrims, the nature of the difficulties they faced, and how they
dealt with those difficulties. They raised questions about the native popula-
tion: Who were they? What kinds of beliefs and ideas did they hold? How
did they live? Were they friendly? How did they feel about the arrival of the
Pilgrims? Did they mind them taking the corn? Did they help them? Did they
attack them? Did they feel threatened? While some waited with anticipation
for the next lesson, others went off to search the Web for answers to their
questions. Work focused on developing ideas about how evidence had si-
multaneously opened up opportunities to explore the historical content. It
was as if, in grappling with the sources, they had acquired a vested interest
in knowing.

WORKING WITH EVIDENCE:
THE ST. BRENDAN’S VOYAGE TASK

The Pilgrim Fathers’ case study exemplifies how several important things
can be happening at once in the classroom. Developing an understanding of
key second-order concepts and learning about the past can go hand in
hand. At the same time as they are learning about evidence, students can
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acquire knowledge ranging from relatively straightforward matters, such as
the physical conditions the Pilgrims faced on their arrival in America, to
more sophisticated ideas, such as seventeenth-century conceptions of Provi-
dence.

We can try to understand students’ ideas and at the same time build on
or reshape those ideas. As we probe students’ use of source materials to
discover their preconceptions about how one can know about the past, we
have an opportunity to develop their understanding of testimony by encour-
aging them to think about how it may have arisen. Encouraging such think-
ing in turn opens up new opportunities to consider what kinds of beliefs are
involved, so that the students begin to consider the nature of the source.
Students capable of discussing these matters are not far from an understand-
ing of how sources may be used as evidence.

Of course, the ideas about evidence that surface in the Pilgrims’ case
study give us only a snapshot of students’ ideas at one point in time. Such
ideas may be more or less well consolidated and stable; they may be acces-
sible to students in one context but not in another. We cannot assume that
any changes that take place in one lesson have been fully grasped, so it will
be important to return to them in other encounters with history. Still more
important, the ideas we uncover in our probing will depend partly on what
has been taught in previous grades. The students’ ideas might have been
different if their earlier teaching had been different.9  The point is not that
someone might have taught the students about the Pilgrims already in an
earlier grade, but that they could have begun to learn about evidence much
earlier, through different content—something exciting that we think is ap-
propriate for youngsters and still fits into our overall content framework (in
this case that of migrations, explorations, and encounters). Equally, we may
sometimes want to help a group of older students who happen not to have
had the opportunity to confront ideas about historical evidence, or whose
understanding remains weak.

The St. Brendan task is an example of one possible way in which we
might begin much earlier than sixth grade to develop students’ ideas about
how one can know the past. The story of St. Brendan’s voyage in the sixth
century allows us to raise the question, “Did an Irish monk land in America
about 1,000 years before Columbus?” This is a question of the kind many
students enjoy, and the different layers of evidence available make it highly
suitable for addressing the problems of making valid statements about the
past. As historical “content,” its importance lies in helping students see that—
even if it were true that Brendan reached America—“firsts” of this kind often
lead nowhere. However, the discussion here focuses not on historical sig-
nificance, but on learning about historical evidence, and serves only as an
example of how such a task might work, not a prescription to be followed
as “the right way to teach.”
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The story of St. Brendan may appear to be a matter of peripheral interest
to a grand theme such as migration, exploration, and encounter, but it is
possible to use very small amounts of content to tackle big ideas. We must
avoid swamping any students with content, but this is especially important
with younger or less sophisticated students. They need space to think, and
teachers need time to help them. The purpose of the St. Brendan task is to
develop students’ ideas of historical evidence, not to give them large quan-
tities of information. We must not repeatedly ambush students with things
they do not know when the point of the task is to equip them with ideas to
help them think more effectively about what they do know. This is an im-
portant reason why the—relatively—self-contained St. Brendan story is used.
The voyage of St. Brendan is also useful because it is likely to be unfamiliar
to students (see Box 3-4).

The St. Brendan task is designed primarily for young students from
fourth grade up. (How far up will depend on what targets we set; students
can respond to open-ended questions at very different levels.) It differs
significantly from the Pilgrims’ task, in part because it is designed to put
teaching first rather than to aid in the “diagnosis” of students’ ideas. None-
theless, teaching and diagnosis must go hand in hand.

Preparing for the Task

Before proceeding with the St. Brendan task, we must consider both the
preconceptions the students will be bringing to the task and just what we
might achieve with them.

The student quotations used in the Brendan case study are from written
work done after whole-class teaching in the United States and the United
Kingdom, and also from recorded oral work with small groups. The group
work (with U.K. children) was important because it allowed students’ dis-
cussions to be recorded so as to give an accurate and detailed picture of
some of what was said, and as a result, the majority of the examples are
taken from the recordings. But it is important to emphasize that the Brendan
task is not designed particularly for group work, and has been used in the
United States and the United Kingdom with full classes from grades 2 to 6.

Preconceptions About How We Know About the Past

Research and experience suggest that the preconceptions we are likely
to encounter will be something along the following lines.10 Many students
between fourth and sixth grades will not have thought about how we know
of the past and will have no settled ideas about how we can gain such
knowledge. They may treat the matter as being about where we find the
information—which books or encyclopedias we consult or whom we ask—
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Students are frequently resistant to teachers’ attempts to change their ideas. One
reason for this is their lack of metacognitive awareness, which can make it difficult
for them to distinguish between what they think they already know about a topic
and new information presented by a teacher or inferred from evidence.

VanSledright set out as researcher and teacher to teach fifth graders Ameri-
can history, while at the same time developing their understanding of historical
enquiry.11  He presented the students with Hakim’s conjecture that local Powhatan
Indians withheld food and supplies from Jamestown, perhaps laying siege to the
stockade for much of the winter of 1609–1610. He provided the students with
primary source materials and a framework for questioning those materials. The
task was to test Hakim’s claim. VanSledright reports the difficulties some students
experienced in having to put aside their everyday ideas and prior assumptions to
focus on the available evidence.

Having picked up on the testimony of Governor George Percy—who spoke of
“great plenty” in 1605 in contrast to Captain John Smith, who reported starvation
at Jamestown in 1624—the students resolved this conflict by depicting Percy as
someone covering up the truth. Many of the students used the testimony as evi-
dence that Percy had survived the famine. Ignoring the temporal context (perhaps
influenced by Disney’s character in “Pocahontas,” the rather fat and greedy Gov-
ernor Ratcliffe, whose dog was called Percy) the students decided that George
Percy had hoarded and eaten all the food and was therefore responsible for the
famine. This position was difficult to shake. As VanSledright tells us, “Given the
documents at our disposal, it was likely that either poor leadership in hunting and
gathering food over the winter or a siege by the Powhatans was a more palatable,
evidence-based interpretation of the Starving Time. However, the die appeared to
be cast. The popularity of ‘liar Percy,’ who hoarded food for himself, became the
interpretive mantra of all but . . .  four students.”

It follows that much may be gained by working with topics that are completely
new to students and do not figure in folk histories, and about which films—by
Disney or anyone else—have not been made.

BOX 3-4 The Dangers of What Appears to Be Familiar

not about what evidence we examine. Others will have given the matter
some thought and will assume we cannot really know because we were not
there. For some students, this is where their thinking will stop.

A majority of the students who have thought about how we gain knowl-
edge of the past are likely to think that true reports (typically diaries or
accounts handed down in families) may allow us to know what happened.
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It’s an information problem. Where do we find the stuff?

It’s a problem about access We can’t know because we weren’t there.
to the past. We didn’t see it.

It’s a problem about finding We can know about what happened, but
true reports. only if we can find something where

someone “told it like it was.” They would
probably have had to see it happen.

It’s a problem about trusting We can’t really know if someone did tell the
“true” reports. truth, and anyway things get changed as

they are passed down. People tell lies and
exaggerate. Some are biased.

It’s a problem about working We don’t depend on people telling us what
things out using evidence. happened. We can work it out from clues

we have, even if no one told us what
happened. We can ask questions of a source
that it wasn’t intended to answer.

BOX 3-5 Common Student Assumptions About How We Know of the Past

But many will recognize that there may be problems in obtaining such re-
ports. Typically they will point out that people do not always tell the truth.
They are also likely to suggest the possibility of transmission errors (a con-
ception modeled on the party whispering game, where a message changes
as it is passed on). They may also assume that we cannot know whether
reports are true or not. Older students—and some fourth graders—may men-
tion exaggeration and bias as additional problems. Even among those stu-
dents who have some idea about links with the past, many will think the
only way to check the truth of reports properly would be to go back into the
past to witness what happened; thus in the end, these students, too, are
likely to come back to the position that we cannot really know about the
past because we were not there.

Box 3-5 summarizes the range of student assumptions about how we
know of the past that we are likely to encounter in our teaching. Our goal is
to help students see that knowing about the past is a problem of working
things out using evidence, but we may have to be content with less: if some
students move from seeing the problem in terms of information to thinking
of it in terms of testimony, we will have achieved something important.
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What Are We Trying to Achieve?

As teachers we could choose to do all sorts of things with the Brendan
story, but in this discussion we focus on some key shifts in ideas. First is the
shift from the idea that we just have information about the past that is
usually true (but sometimes false) to the idea that any claim about the past
needs testing and some sort of backup. Second is the shift from the idea that
we cannot say anything about the past unless someone from the time left us
a true report (testimony) to the idea that we have to work out what hap-
pened using evidence.

By the end of the Brendan task, fourth graders who started with little
experience of working with historical evidence should understand (at least
in this context) that the past is not given information, fixed by books or
authorities; that we have no direct access to the past; and that we do not rely
on someone from the time telling us truthfully what happened. Nonetheless,
we can work out what happened; indeed, a discipline called “history” exists
precisely because we have to work it out. Students should also understand
that often we cannot be certain about what happened, but this does not
mean guessing is sufficient: when we cannot be certain, we can still produce
stronger or weaker arguments about what answers make most sense. This
understanding is likely to remain highly unsophisticated after just one task,
and students will find it difficult to articulate what counts as a “stronger” or
“weaker” argument. This is why it is important to return frequently and
explicitly to what makes an argument work or fail in a range of contexts.

This level of understanding is likely to be enough for many fourth-grade
students. However, some youngsters may already be working with much
more sophisticated ideas than most of their classmates, and eventually we
want all our students to go beyond the above shifts in ideas. Thus it is worth
thinking about how to take students’ ideas about evidence a little further
should such opportunities arise.

Only when we are clear about the question we are asking can we say
what evidence is available, and it is our question that allows us to begin to
consider whether a source of evidence is reliable. People often talk of writ-
ten sources as more or less “reliable” as though these accounts are reports to
be judged on what they are deliberately telling us—mere testimony that we
must accept or reject (whether in part or as a whole). Students often think of
reliability as inherent in the source instead of asking themselves, “Reliable
for what?” We might expect some students to go further, and understand that
we can ask a question that is not about what the source is reporting at all. All
this indicates the importance of helping students understand that it is ques-
tions that lie at the heart of using evidence. Students also tend to think of
reliability as an all-or-nothing property of a source rather than as a judge-
ment about how far the source can be used as evidence to answer a particu-
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lar question. They should understand that some questions place heavier
burdens on a source than others. In other words, the burden of proof resting
on a source varies according to both the nature of the source and the de-
mands and precision of the question. For example, answers to the question,
“Did Bjarni Herjólfsson accidentally reach Labrador in the tenth century?”
may impose a greater burden of proof on a source than does the question,
“Could the Vikings have reached America?”

Students can begin to tackle these problems by considering something
close to their lives. How reliable is a school report? Can we answer that
question without knowing what it is supposed to be evidence for? Is it as
reliable for providing evidence of a student’s school behavior as for provid-
ing evidence of the teacher’s attitude toward the student? Many fourth grad-
ers are well able to appreciate the importance of the question we ask if we
begin with everyday examples:

Teacher If I say “Here’s your teacher’s report, on you,
what are the things I can learn about you, and
what sort of things can’t I find about you from
this report?” what would you say?

Jeff You could learn how we act around our
teacher.

Carly If we chat, and not listen.

Teacher What wouldn’t we be able to learn?

Jeff How we act at home, what sort of games we
play on our Playstation.

An extension of these ideas is that our questions need not ask about
what the source is trying to tell us. Moreover, some sources are not trying to
give us any kind of true story about something that happened; they are relics
of an activity, not reports on it.

Teacher OK, supposing I get one of your exercise
books. Is there anything in it about you?
There’s nothing in it telling a story about you?
Does that mean I couldn’t say anything about
you on the basis of what’s in the book?

Carly Our handwriting and spelling . . .

Jeff You could say I’m not very good at writing.

Teacher So if a historian picked up your exercise book,
she could tell something about you even if you
weren’t trying to tell her anything.
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The Brendan task actually sidesteps talk about “reliability,” precisely
because it can too easily lead youngsters to think in terms of accepting or
rejecting something as a true or false report rather than thinking about how
to use it as evidence. There is a sense in which it is doubly misleading to
think of the Brendan story as a true report of something. How could this
story possibly be testimony that Brendan reached America? There was no
“America” when the story was written, so no one could write a report of his
reaching it. This is another reason why the whole tenor of the task is one of
working out the best answer we can get to what is our (twenty-first-century)
question.

If the Brendan task were used with students in the seventh grade and
beyond, we would be thinking in terms of more sophisticated understand-
ing (even fourth or third graders who started with more powerful ideas than
those we assumed in the previous section would be capable of making real
gains here). In particular, it would be worth developing the idea that to
make sense of a piece of evidence, we must know what kind of thing it is.
The account of the voyage of St. Brendan is not a failed attempt to give a
factual report of an exploration, but a story about a saint. There is not a
necessary conflict between its inclusion of supernatural events and its hav-
ing a basis in fact, because if the author were writing for an audience that
expected wonders, their absence would simply weaken the story. So even in
the unlikely event that the writer had access to an oral tradition that gave a
detailed account of a more modern kind, we would scarcely expect the story
to have been written in that way. The teaching target, then, is to help stu-
dents see that we cannot decide whether the Brendan story will help answer
the question “Did Brendan get to America?” by dismissing it as a “made-up”
story, any more than they can simply accept it as a “true story.” We are trying
to get them beyond this simple dichotomy and encourage them to ask,
“What kind of story is this?”

How can we know what inferences we are entitled to draw from a
source? At this point, we are touching on ideas generally labeled “empathy”
or “perspective taking.” The link between evidence and empathy is the gen-
eral principle that, if we are to be able to use any particular source of evi-
dence to answer a question, we must know what kind of thing the source is.
And we cannot know what kind of thing a source is if we do not know what
it meant to the people who produced it. Only if we understand that a source
is, say, a piece of religious exhortation rather than a news report can we
avoid making serious mistakes in the way we argue from it. And knowing
what a source is means knowing what people at the time saw it as, which in
turn requires knowing about people’s world view at the time. Students may
find it easy to deal with this issue in the context of everyday items with
which they are familiar, especially if those items have a place in the students’
culture that is not always obvious to adults. For example, students would
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likely have little trouble in seeing how a future historian who assumed that
a high-status brand of sneaker was just a shoe might find it difficult to under-
stand how someone would commit a crime to obtain it.

However, a task designed to tackle students’ ideas about understanding
people in the past would have to offer them more material about Brendan’s
world than is required in the evidence task on which we are focusing here.
We must not confuse our goals by attempting too much at once, and in any
case, there are other specific ideas that students need to learn in connection
with empathy. It is enough in the Brendan task to help students see that they
need to ask what kind of story they are dealing with before they can safely
use it as evidence.

Preconceptions About People, Society, and How the World
Works

It is much more difficult to predict what assumptions students will have
about the substantive past than what they will assume about the discipline
of history. This is so because in the former case, so many assumptions are
possible in so many different areas, even with relatively circumscribed con-
tent such as the Brendan story.

The problem of identifying students’ assumptions is complicated enough
when we confine ourselves to their ideas about what is physically possible.
Some will expect wooden objects to last for thousands of years and think it
possible for submarines to search the entire seabed of the Atlantic in a week
or two to find the remains of a small wood-and-leather boat. Many will have
no idea what an ocean current is or why it might have made a difference in
what destination a sailing boat with a steering oar could reach. Some will
imagine icebergs to be rather small objects, a few yards across. (And of
course few will know the location of the Faroe Islands, Iceland, or New-
foundland. Here, however, it is easier for the teacher to list essential knowl-
edge and make sure it is available.)

Predicting students’ prior conceptions is even more difficult when it
comes to ideas about what people do. The one thing we can be fairly sure of
is that students will assume people in the past thought as we do. Thus in
teaching about Brendan, we are likely to find students arguing that the story
may have been exaggerated so that it was more exciting, and that one rea-
son for this was that the writer could make a better profit. Behind this argu-
ment, of course, is a picture of a world that has always had widely available
books, mass literacy, and a capitalist economic system.

What all this means is that as teachers we need to be sensitive to stu-
dents’ substantive assumptions as we proceed—hence the importance of
lessons in which students have room to express their ideas so that there is
some chance of discovering what those ideas are. But it is important to
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remember with something like the Brendan task, which is designed to de-
velop understandings about the discipline of history, that not all students’
substantive misconceptions actually matter for the task at hand. For this task,
the focus is their thinking about how we know about the past, not on cor-
recting every minor misconception about geography or even about how
society works.

Working Through the Task

The Question

We begin with the question:

Did an Irish monk land in America about 1,000 years before
Columbus?

As teachers we need to be very clear in our own minds about the ques-
tion right from the start, even if it is not necessarily sensible to pursue this
with the students as an abstract issue at the outset. This particular question is
asking about what happened, not just what was possible. Since in history it
is always the question that decides what can be evidence and how that
evidence can be used, this is an important point.

We tell the students that they are going to look at some important his-
torical sources and that they will use these sources as evidence to try to
obtain the best answer they can to the question. The idea of “the best an-
swer you can get” is something that can be woven into the discussion as it
proceeds.12  By the end of the task, we will want all the students at least to
understand that “the best answer” means the one for which we have the best
evidence. Some students will be able to think in more sophisticated terms—
perhaps something more like “the answer that makes the best sense of the
most evidence and is not knocked out by anything.”

The Story

We next give students an introduction to the story of St. Brendan’s voy-
age and the story itself to read. (This material can be read by the teacher, but
preferably should not be read around the class by students since doing so
tends to break up the picture, especially if the students read in a halting
manner.) Issues about the meaning of words or sentences can be addressed
at the end, but not in a way that preempts interpretation. For example, there
should be no hint that the supernatural elements in the story might also be
interpreted naturalistically or that they are somehow signs of the story’s
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being discredited or “untrue.” At this stage, we normally try to avoid offering
any views of our own on the nature of the story or its veracity. We need to
find out how our students see it.

Introduction:  The Story of St. Brendan

(All the underlined words are explained at the end.)

Sometime between the year 900 and the year 1000, someone
wrote down an amazing story.  It was written in the Latin lan-
guage.

The story described how an Irish monk called St. Brendan went
on a long voyage lasting 7 years to a land called the Land of Prom-
ise.  We know that Brendan lived in Ireland between (roughly) 486
and 578.  There are things in the story that make some people think
Brendan might have crossed the Atlantic Ocean and reached
America.

It is quite likely that the story comes from even earlier times
than 900, but we don’t know that. There are more than 120 ver-
sions of the story in Latin and more in other languages. They all
say almost the same things.

Time Line

  500               600             700           800           900                     1000

__________________________________________________________

         

   St. Brendan alive              Brendan Story          Brendan Story probably
             might have been        first written down
             written down            around this time
             as early as this
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The Voyage of St. Brendan

(This is a shortened version of the story.  It misses out some
of the adventures of St. Brendan and his crew of monks.  All the

underlined words are explained at the end.)

St. Brendan lived at Clonfert in Ireland. He was head of a com-
munity of 3000 monks. One day a monk called Barrind visited
Brendan and told him about a Land of Promise across the sea in
the west.  It was a wonderful place, special to God.

Brendan decided to go and find this Land of Promise. He and
his monks built a boat with a wooden frame, covered in tanned
leather.  He put food and drink in the boat to last for 40 days, and
also spare leather and fat for greasing it.

1. An Irish boat, copied from a carving done on a stone pillar
some time between 700 and 800.

Brendan set out with 17 other monks and sailed west.  After 15
days they landed on a tall rocky island.  A dog led them to a settle-
ment, where they found a meal waiting for them.  They stayed for 3
days without seeing anyone, but food was always set out on the
table for them.

Next they landed on an island with lots of streams, all full of
fish.  It was called the Island of Sheep, because flocks of sheep roamed
over it all year round.  A man gave them food.

Then they visited another island that was rocky and bare.  They
made a fire to cook food, when suddenly the “island” began to move.
The monks quickly jumped into their boat, just in time to see the
“island” swim off with the fire still burning. St. Brendan told the
monks that it was the biggest fish in the ocean, and its name was
“Jasconius.”
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2. The monks land on Jasconius. A picture painted between 600
and 700 years after Brendan’s time.

After this the monks sailed to an island called The Paradise of
Birds. They hauled their boat almost a mile up a narrow stream,
and found a huge tree covered in white birds.  A bird flew down
and told Brendan that the birds were men’s spirits, and that he
would have to search 7 years to find the Land of Promise. The birds
sang hymns and chanted prayers at the right times of day.  A man
called the Steward brought food across to the monks. (He was the
man who had given them food on the Island of Sheep.)

The monks were at sea for 3 months before they came to an-
other island.  They were so exhausted that they could hardly row
the boat against the wind. On the island they found monks who
had agreed to keep silent (so that they could concentrate on think-
ing about God). The monks had been there 80 years, and none of
them had been ill. They showed Brendan how their lamps were lit
by a miraculous flaming arrow each evening.

The monks had many adventures before they found the Land of
Promise. Many times they found themselves back at the Island of
Sheep. But they still continued their search. Once they found a col-
umn of crystal sticking up out of the sea. It was surrounded by a
mesh that was the color of silver and as hard as marble.  They
found an opening in the mesh and took the boat close to the col-
umn. St Brendan and his monks measured the column. Its four
sides were each 700 yards long. The monks then took hold of the
mesh and pulled the boat out to the open sea.
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3. A modern picture of what we think Brendan’s boat might
look like.

Another day the monks were blown towards an island, and
Brendan was worried.  He heard the sound of a forge, with the
thud of a hammer on an anvil.  As the monks came near the is-
land, an islander came out and threw molten metal and hot stones
at them. A lump flew 200 yards over their heads and fell into the
sea. The sea round it boiled, and smoke rose up.  Then more island-
ers rushed down to the shore and threw hot stones at the monks.
Soon it looked as if the whole island was on fire.  The sea boiled, the
air was filled with a howling sound, and there was a terrible smell.
Brendan told his monks they had reached the edge of Hell.  They
sailed away as fast as they could.

In the end the Steward from the Isle of Sheep had to help them
find the Land of Promise.  They left the Isle of Sheep again, and
after 40 days at sea they sailed into a great fog.  The Steward said
the fog always encircled the Land of Promise.

At last they saw a great light, and the boat came to the shore.
The land was full of fruit trees. They explored for 40 days, but still
did not come to the end of the land they were exploring. Finally
they reached a big river, which Brendan said they would not be
able to cross. A man came to them, spoke to them by name, and
said the land would eventually be made known to all people at a
time when Christians were being persecuted.

Brendan gathered samples of fruits, and sailed home with his
monks.

Explanation of Words in the Story
Latin
Latin was the language people used for writing in Brendan’s time.
Almost the only people in Europe who could write were Christian
monks and priests.  Christian priests continued to use Latin for
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most of their writing for more than 1,000 years after Brendan’s
time.
Monk
Monks are men who spend their lives studying God, worshipping
him, and trying to do what God wants. They live together in com-
munities called monasteries, helping each other and worshipping
God together.
Communities
Communities are groups of people who live or work together.
Land of Promise
This means a land where everything is right for people to live a
great life. It’s the sort of land where it is easy to find food, where all
the plants and flowers are beautiful and grow well, and the cli-
mate is comfortable.
Tanned leather
This was specially toughened leather. It was soaked in juice from
the bark of oak trees to make it stronger.
Column
A column is shaped like a pillar or a fat post, usually taller than it
is wide.
Crystal
The monks meant the column was hard, bright, and semitranspar-
ent.
Mesh
A mesh is like the sort of pattern you get with a net: squares with
lines or gaps between them.
Marble
This is a very hard kind of stone, often used for expensive build-
ings or for gravestones.
Forge
A forge is where blacksmiths make tools or weapons out of hot
iron.
Anvil
This is a big block (usually made of iron) that blacksmiths use.
When they are beating some hot iron into shape with a hammer
(to make a tool or a weapon), they rest the hot iron on the anvil.

Working Things Out for Ourselves

Once the students have read the story and preferably had a chance to
talk to each other about it, we can ask, “What do you think? Did St. Brendan
get to America? What’s your hunch?” After time for a free discussion, part of
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the point of which is to discover the way students are thinking about how
we know the past or about how the Brendan story might be tested, we can
press for justifications. “How can we take this further? What kind of backup
can you give for your hunches? It needs to be something that might per-
suade someone else.”

The first target is to build the idea that claims about the past cannot be
taken simply as (given) information, true or false. We have to be able to
justify them, and this may raise problems for us. The kinds of moves stu-
dents are making will need to be made explicit and weighed. What exactly
are they doing to test the claim here? What is helpful? What does not work?
Are they treating the sources simply as information? (See Box 3-6.)

We need to encourage students to think about their own strategies and
arguments as much as about Brendan. Some group work may be valuable
here, although whole-class discussion can be highly effective if students are
used to really listening to each other.

We also want to begin to counter the idea that we are totally dependent
on someone in the past telling us a true story. We can try to make students

BOX 3-6 Going Beyond Face Value

When they start using historical evidence, students seldom pay much attention to
the provenance of the sources, especially when they are looking at pictures. But
faced with a paradox and a little encouragement to look more closely, they can
often take major steps beyond treating sources as information.

Teacher The boat was made of leather wasn’t it? So how come
that boat [points to Jasconius picture] is made of wood?
Before you answer, just read what it says under the
picture.

Don So if it was painted after all them years, perhaps the
painter never knew what his boat looked like, he just
thinks, “Cor blimey, I don’t know what to paint, so I
might as well just pretend his boat’s wood.”

Rachel The painter wouldn’t know that his boat was made of
leather ’cos the painter weren’t a scientist, and he
would’ve had to read something like this, what we’ve
read, to find out.

Jilly Because it was 700 years later, they didn’t think, like,
you’d have leather boats in that time, because they
would’ve had wooden boats.
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Youngsters are not generally accustomed to thinking about the kind of knowledge
they have and how they are using it, so although they are well aware of the con-
crete suggestions they have made, getting them to consider these ideas reflex-
ively may be difficult.

 Teacher You’ve given some good reasons. Where were they
coming from?

 Sonny My brain?

 Joe  What we’ve learned.

 Teacher Well, let’s look at the things Sonny was saying, because
what he actually said was they’d have run out of food,
because if you count the number of days they were on
the voyage. . . . Now, what sort of test is that? Where’s
that idea come from? What is it that you know, to have
asked that question?

 Sonny I just wondered how could they survive without food.

 Teacher OK, but what is it that you know, to make that a good
question?

 Charlene Because in this story it said nothing about food.

 Teacher Right, but why is Sonny right to say, “Hang on a
minute, they haven’t got enough food”? Where does
that knowledge come from that he has?

 Joe It says in the first part they only had enough food and
drink for 40 days.

 Teacher So he’s looked very closely at the story, but then he’s
testing it by asking a question that’s not from knowl-
edge about the story. What’s it knowledge about? When
you say, “Could they have survived without food?”,
what knowledge are you using?

 Joe Oh! Using the knowledge that everyone knows that you
can’t survive without food!

This exchange among third graders is the start of a process, not a secure achieve-
ment at this point.

BOX 3-7 Being Aware of How You Are Thinking

aware of the kinds of criteria they are already using that are not dependent
on authority (given information) or on testimony (see Box 3-7). They raise
such questions as “Could this incident have happened?”, “Do birds sing
hymns?”, and “Isn’t the Atlantic a bit rough for a little leather boat?” The fifth
graders in the following (written) examples provide plenty for their teacher
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to go on, but the key point to emphasize is that we are not completely
helpless if someone is not “telling the truth.”

Greg I think St. Brendan did get to America. But the
story would sound more real if they took out
all of the talk birds. You could find out by going
to a library, and if the library doesn’t have it,
ask somebody else.

Barbara I’m not sure [if Brendan got to America]. To me
he could have just sailed to another part of
Ireland he didn’t know about. I don’t even think
this story is true, because the stewardess [sic]
was also before them, so he could have
reached “America” before them. When they
first met him, how did they know they weren’t
already in America? The way the story is told
just sounds fake. If no one had been to
America, how did they know about it, and why
did it take so long to write about it? If we
wanted to find out, we would have to take
everybody who thought about this back in
time, because one person could lie.

Many students, like these third graders, distinguish between “true stories”
and “fake” or “made-up stories.”

Charlene If they wrote it like 300 years after he’d done
something, it couldn’t, it might not be true ’cos
they don’t actually know.

Joe How would they know this would’ve happened
all those years after?

Sonny The story could be carried on by other people.

Charlene But it might be made up.

Sonny It might be not true, it might be, like . . .

Charlene Made up. It might be, what do they call, is it
fiction or nonfiction?

Teacher It’s fiction if it’s made up.

Charlene Yeah, fiction.

We need to be sure students are clear that factual stories try to say true
things, whereas fiction is invented, and does not have to be true. But this is
just making sure that everyone is starting from the same point because, as
noted earlier, we need to get students beyond this simple dichotomy. Young-
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sters often have problems in conceptualizing something that is not straight-
forwardly true or untrue. Take the following discussion among third graders.

Teacher What sort of story do you think this is?

Ricky I think it’s like sort of true, and not true, sort of
story, between that.

Teacher Half way between true and not true? And why
do you think that?

Ricky It might be, in that bit, they, he might [much
hesitation and repetition of start of sentence]
. . . I don’t know what I’m going to say now
[laughs].

Teacher [Laughs] No, keep going. . . .Sounded interest-
ing.

Ricky I’ll start again. I think it’s between that because
he might not get there, and it’s like sort of
made up, some of this, I think.

Teacher What makes you think some of it is made up?

Ricky Because there couldn’t be a giant fish—there’s
no giant fishes around now.

Lenny You know that fish, it could be a whale-shark.

The idea that Brendan may possibly have reached America or that his
doing so may be more or less likely tends to be expressed in terms of
Brendan going part of the way. Halfway between true and made up is turned
into part of the way to America.

Bill He could’ve gone somewhere near America.

Steve He might have done it to Canada.

Naomi Yeah, but America just doesn’t fit.

Steve I think it was Canada.

Teacher They’re including all that as America. It’s the
continent of North America, not the country—
there wasn’t one called America then.

Naomi I think it was round about America but not
America.

Teacher So where was it then? That’s not a good move,
because now you’ve got a worse problem,
because you’ve got to say where it could have
been, and there isn’t anywhere it could have
been.

Steve What’s under America?
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Teacher More of America.

Bill Mexico! Might be Mexico.

Steve Could’ve gone to Cuba.

Teacher But if he got that far, he could have got to
America.

Bill America’s so big. He could’ve gone that side of
the world [pointing to Indian Ocean].

Note that the problem here is not that the students’ geography is shaky
(although that may be true), but that they have a desperate need to find
something Brendan might have reached that is not America. If the story
cannot be accepted but cannot be dismissed, the answer must be that Brendan
got part of the way, or even went a different way. This notion is a proxy for
talk of possibility or likelihood. Mitch, a fifth grader, may be thinking in this
way when he suggests, “I think it’s not possible because he might have went
in circles, there might have been another way to get to America to go the
opposite way, or it might not work because of the wind and currents.”

Much of the discussion will be based on plausibility, partly because the
task is deliberately designed so that initially it gives little else to go on; thus
students are able to make judgments without having to master a mass of
material. They generally will not use the word “plausible,” but it is valuable
to introduce the term here to make them more aware of their own thinking.
As students are introduced to new evidence, we can then keep returning to
the question, “How plausible do you think the story is now?”

Most students at this stage talk in terms of “everyday” plausibility—what
would be plausible if the story were written today. Ideas that appeal to what
was likely then do not usually emerge until later, when we turn to the kind
of story the Brendan voyage is. The distinction is highly sophisticated, but
occasionally a few students will hint at it. Such responses need reinforcing—
not necessarily at this point if doing so discourages other responses, but as
something to return to should the chance arise.

Thinking About the Story from the Outside

To build on the general ideas students use to make their first judgment
about Brendan’s voyage, we can ask a simpler question: “Is it even possible
that a boat like Brendan’s could make a journey across an ocean?” Because
we want to know how the students are thinking, we can also ask, “How
could we find out?”

If the students are to make good progress in answering these questions,
they will need to consider more specific knowledge, namely other relevant
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things we know about Brendan and his times. But students often suggest
making a copy of the Brendan boat to see what it can do, and because Tim
Severin did exactly that, this is a good time to introduce his reconstruction
and his crossing of the North Atlantic.13 Shirley, a fifth grader, immediately
saw the possibilities: “I don’t think Brendan got to America. We could find
out by remaking the events, finding how possible each is and when they
might have been.”

How far could a leather boat have managed to sail?

In the 1970s someone made a leather boat just like the one St.
Brendan would have used and tried to sail it from Ireland to
America. He was called Tim Severin, and he and four other sailors
sailed from Ireland to Iceland in the summer of 1976, and then
from Iceland to Newfoundland in the summer of 1977.  They had
to sail through some rough seas, and past icebergs but the boat did
not sink and they made it successfully!

Below is a photograph of Tim Severin’s reconstruction of a boat
from Brendan’s time. The picture shows the boat just as it reached
the coast of Newfoundland.

Scientists think that the climate was probably warmer in the
times when Brendan was sailing than it is now. Brendan might
not have met such gales and rough seas as Tim Severin did on his
voyage.

What do we know about the sort of boat St. Brendan
would have used?
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The boat Brendan would have used would have been made of
specially toughened leather, sewn over a wooden frame. The boat
would have used sails on the open sea, and people would have
rowed it with oars when it was near the land.

Below is an Irish boat, copied from a carving done on a stone
pillar sometime between 700 and 800.

Map 1. The North Atlantic Ocean, where St. Brendan would prob-
ably have had to go if he did get to America.
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Map 2. Places we think it likely that St. Brendan visited.

What do we know, or think might be true, about St. Brendan?

• We know Brendan lived in Ireland between (roughly) 486 and
578.
• We know he sailed to Iona, an island several miles off the west
coast of Scotland.
• We think it is very likely that he sailed to Brittany in France.
• We think it is possible he visited the islands beyond the north of
Scotland.
• We know many Irish monks made voyages in the seas near Ire-
land at this time.

Map 1 is especially useful at this juncture since we want to add material
to allow students to think about the story in the context of more particular
historical knowledge. It is obviously important to check that students have
some conception of the size of the Atlantic. But more important, without
Map 1, they tend to dismiss the evidence of the sea journeys offered in Map
2 on the grounds that America is so much farther on a direct route that the
shorter voyages are irrelevant. Map 1 shows what kind of journey might
have taken place. It allows students to see the relationships among the is-
lands that might have broken up Brendan’s journey, and how winds and
ocean currents would have dictated that he take precisely that kind of route.
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Even so, some fourth graders will not see the connections to be made with-
out careful teaching.

Having looked at the further evidence shown above, Shirley (fifth grade)
commented, “Yes, it is possible because Tim Severin did it, but you need
rations and tools.” Students from third grade up can be very suspicious of
such a reconstruction, pointing out that Tim Severin knew where he was
going, and St. Brendan did not. For third graders, the fact that Tim Severin
had a crew of only four represents a crucial difference because they would
have eaten less food than a larger crew.

Some students will find it difficult to grasp the idea that because it may
have been possible for a boat like Brendan’s to reach America, this tells us
nothing about whether it did do so. (Of course, recognizing the possibility
makes the question of whether it did do so one that may be worth asking.)
We can ask students directly: “Tim Severin’s voyage proves that a leather
boat can sail across the Atlantic. Does that prove that Brendan did make it to
America?” Joe, a third grader, wants Brendan to have made it, and shifts
from a claim about what was possible to a claim about what Brendan actu-
ally did:

Joe This is proof. This is proof of it.

Teacher What, Tim Severin’s copy is the proof?

Joe Yeah, it . . .

Teacher What does it prove?

Joe It proves, like, that he did go from Ireland to
America, to the Land of Promise, and if he did
it, then probably Brendan did it.

Teacher That who did?

Joe Brendan.

Teacher It’s proof that Brendan did go?

Joe Yeah, it’s proof.

The issue of what weight the evidence will bear can be raised at this
point: the Severin voyage is strong evidence if our question is whether the
voyage was possible, but carries much less weight if the question is whether
Brendan actually reached America. This is a difficult idea, but it is accessible
to many fourth graders, particularly if something like Cartoon 1 (provided by
Phil Suggitt) is used to reinforce the point.

In this example, Charlene, a third grader, doesn’t immediately under-
stand what is involved when the teacher asks her to use the idea in another
context but then suddenly sees how it works:
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Teacher Tim Severin’s voyage, what did we think it did
prove?

Charlene That Tim Severin got there, but Brendan
might’ve not.

The teacher then asks what questions their exercise books will and
will not answer.

Charlene I don’t know what you mean.

Teacher I’m looking at your exercise book now. What
questions can I ask that it will answer for me?

Joe It will answer if we are, a nice character—no! If
we are messy!

Teacher And what won’t it answer?

Charlene It won’t answer, like, if I’m, if I get along with
my Mum or my brother, or if I don’t.

Teacher Your exercise book’s like the donkey. If we ask
it the question about what your writing’s like,
or what you were doing on a certain day in
class, it can carry those questions.

Cartoon 1.
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Charlene Mmm [agrees].

Teacher If we ask it the question “How do you get on
with your Mum?”. . .

Charlene It’d collapse!

Once they get used to the idea, students begin to use it themselves, as in this
example, also from third grade.

Teacher Because it’s a story about a saint, will it let us
say anything about whether Brendan got to
America or not? What do you think?

Ricky I think that story would collapse.

Lenny I don’t think it would collapse for whether he
got to America or not, because, um I need to
check on the map [hunts for map], Newfound-
land, well, that’s part of America, isn’t it, and
he got to Newfoundland.

We can pursue this concept further by asking what difference the evi-
dence about Brendan’s known seagoing (Map 2 and the factual statements
linked to it) makes to the weight Tim Severin’s voyage will bear for our big
question. Common reactions include the claim that Brendan probably did
get somewhere (substituting “halfway there” for “possibly got there”) and,
depending on prior learning, comments about how far Viking or Roman
ships managed to sail, with conclusions (positive or negative) about what
that meant for Brendan’s leather boat.

Thinking About the Story from the Inside

The students have already been thinking about the internal evidence
(i.e., the evidence that can be found in the story itself), of course, and some
may already have introduced natural explanations for the supernatural events
in the story. But we now require a closer and more systematic consideration
of the story. Two sets of questions start things off:

Make a list of the three things in the story that would best
back up the claim that Brendan reached America. How do they
back up the claim?

What parts of the story make the claim that Brendan reached
America a shaky one? Pick the three things that seem to you
hardest to accept. How do they make it hard for us to believe
that the story shows that Brendan reached America?
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These questions can produce widely varying results. Some students are
skeptical from the start, whereas others want Brendan to have succeeded.
Both groups find the second question much easier than the first. As an
answer to the first question, fruit trees do not amount to much! The only way
to see the evidence inside the story as supporting the claim that Brendan
reached America is (1) to interpret key events in the story naturalistically,
and then (2) to use evidence from outside the story to show how those
events fit the route Brendan is most likely to have taken. One powerful line
of argument is the difficulty of finding an alternative destination that fits as
well as America. If any of the story is to be treated seriously as an actual
voyage, what other destination could fit the events better? This kind of un-
derstanding appears to be tacit in some youngsters’ comments, but to see its
importance and be able to articulate it involves sophisticated thinking, gen-
erally done spontaneously only by older students.

To bring out the way in which events in the story fit the most likely
route, students need to be conscious of alternative ways of seeing some key
events. For this purpose, the materials used in this example focus on the
crystal column and the “edge of Hell.” The first step is to raise the general
issue of how we interpret things, using a concrete example—the duck-rabbit
and the bird-antelope.  (See Cartoons 2 and 3, provided by Phil Suggitt.)

Before we take a closer look at bits of the story, we need to
think about how we make sense of things we see or things we
read. What do these two pictures show?

Cartoons 2 and 3.

Strictly speaking, because these examples depend on perception and
not on how we understand text, they are different from history. There is a
danger here. There is no right answer in any sense, and nothing turns on
which answer is chosen. The danger is that students may think this is true of
interpretation in history. It is important to stress that in the case of Brendan,
we are trying to decide what happened, and we have something to go on.
Students can be reminded that they have already used material from outside
the story. If handled carefully, the analogy, despite its defects, is close enough
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to engage fourth graders, and it creates considerable excitement and amuse-
ment among younger students.

The bird-antelope raises questions about the shaded area on its neck. Is
this fur or feathers? The answer depends on the interpretation of the whole
picture; the details are too ambiguous to settle the issue. We go back and
forth between the shading and the overall shape to decide what the animal
is. Something analogous applies with Brendan: the way we view the story
will help determine how we view particular incidents within it, and vice
versa. However, it would not be wise to pursue this point unless the stu-
dents are already making sense of the basic issue—that some things can be
interpreted in more than one way. The next step is to ask the students to
look again at the paragraph in the story about the crystal column. Some
students will already have seen that the column may have been an iceberg,
although many fourth graders do not think of this interpretation at first. If we
ask, “Can you think of two different ways this part of the story could be
interpreted?” and then provide the pictures below as either a confirmation or
a revelation, we can give a concrete example of interpretation, categorizing
the pictures as supernatural and natural interpretations. (See Cartoons 4 and
5, provided by Phil Suggitt.)

Cartoons 4 and 5.

This material often provokes exchanges such as the following (fourth
grade):

Bill I think it’s a fairy tale, like, a bit like Cinderella
and the Fairy Godmother, like . . .

Naomi Like the birds and spirits and that sort of thing.

Steve If you reckon it’s a fairy tale, you don’t see
people trying to kill you in fairy tales, do you
. . .
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Bill Some fairy tales there are—Little Red Riding
Hood—the wolf tries to eat you.

Naomi I think it’s a kind of fairy tale.

Bill A fairy tale, ’cos people throwing molten hot
rocks, wouldn’t they actually burn their hands?

Steve But it could’ve been real people, and it
could’ve been a volcano, and the crystal
could’ve been an iceberg, and the fish could’ve
been a whale, and the talking birds [long
pause] parrots [triumphantly].

Bill [Contemptuously] How can you get white
parrots? Must be a one-in-a-million chance to
see a white parrot.

The “jug” or chalice in the supernatural picture provokes questions and
enables us to complicate matters a bit. The fuller version of the story allows
the teacher to raise a note of caution about jumping to conclusions.

Before you come to a decision, you ought to look at a fuller
version of what the writer actually wrote, not just the sum-
mary you’ve had to work with so far. Here it is.

One day after they had said Mass, they saw a column in the sea. It
did not appear to be far away, and yet it took them three days to
get near it. When the Man of God came near to it, he couldn’t see
the top, because it was so high. It was higher than the sky.  All around
the column was an open-meshed net, with openings so large the
boat could pass through the gaps. They didn’t know what the net
was made of. It was silver in color, but seemed to be harder than
marble. The column itself was of clearest crystal. The monks pulled
on the meshes of the net to get the boat through it. There was a
space about a mile wide between the net and the column. They
sailed all day along one side of the column, and could still feel the
heat of the sun through its shadow. The Man of God kept measur-
ing, and the side was 700 yards long. It took four days to measure
all four sides. On the fourth day they saw an ornamental church
plate and jug in a window of the column. They were made of the
same material as the column. Saint Brendan took hold of the plate
and the jug, and said, “Our Lord Jesus has shown us a miracle, and
given me these two gifts so that other people will believe us.”
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The Mass (which can be explained simply as a religious service) and the
title “the Man of God” for St. Brendan both help to emphasize that the story
is connected with religious beliefs and is not just a “factual report” of what
happened. We can ask, “Has this changed the way you think we should
interpret the crystal column, or not? Why?”

We then give the same treatment to the “Hell” passage. The students
reread the relevant paragraph of the story, and then we ask, “Is this piece of
the story natural or supernatural?” Once again two pictures emphasize the
basic point, but this time they are rapidly followed by some new informa-
tion. It is this information that opens up the possibility of interpreting three
major incidents in the voyage, in addition to the iceberg, as indicating just
the kinds of things that might have been encountered on a voyage that
followed prevailing Atlantic winds and currents. (See Cartoons 6 and 7,
provided by Pill Suggitt.)

.

Cartoons 6 and 7.
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Some facts we have good reasons to be sure about

• The Faroe Islands have had large flocks of sheep on them for
a very long time.

• Iceland has active volcanoes on it that still erupt even nowa-
days.

• There is very often fog in the area near Newfoundland.

Some fourth graders will initially deny that that there could be volca-
noes in Iceland because volcanoes are hot and Iceland is cold, so it is impor-
tant not to allow this misconception to make nonsense of the kind of progress
we are trying to make. The questions we ask to this end can be straightfor-
ward, reinforcing the importance of interpretation: “How should we inter-
pret the visit to the island that Brendan said was Hell? Could the Isle of
Sheep have been a real place?” Students quickly appreciate the idea that
there may be a case to be made for saying that Brendan passed the Faroes
and Iceland, encountered an iceberg somewhere during his journey, and
ended up in the fogs close to Newfoundland. For some students, the result
is a huge step in understanding. In the following example, Joe, a third grader,
begins to see that his earlier ideas were too simple:

Joe Brendan’s gone from Ireland, to the Faroes,
named it the Island of Sheep, then went to
Iceland, called it [pauses] . . .

Teacher Called it Hell.

Charlene Why?

Teacher Because Hell’s supposed to be very hot and
smoky and smelling.

Joe Called it Hell, and saw the people throwing
rocks at him which was really a volcano, and
then on the way saw the iceberg, which they
thought was the crystal column but really it
was the iceberg, and then they saw the fog and
then they got lost, then came to Newfound-
land, and the whole thing is part true, part
fiction.

Teacher Right. But you started by saying it was all
made up.

Joe It’s not all made up. The person going from
there to there [points to map] is true. But all
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this [edge of Hell, etc.], all that rubbish is not
true.

Teacher So, why would that be there if it was true that
he made that trip? Why would they put it in
those other funny ways?

Joe They put the miracles in because they thought,
they would think, that it’d be true.

In the last sentence there are signs that Joe is beginning to see that having
miracles in the story might have made sense at the time. This is a big step for
a third-grade student.

At this point, we have to be careful that students do not think the matter
is sewn up. Rereading the passages about the hymn-singing birds, Jasconius,
and the arrow that miraculously lit the lamps is a useful way of reminding
students that whatever they say about the story must explain these things as
well.

Finding Out What Kind of Story the Brendan Story Is

The problem can now be put to students as follows. If we say this story
is just a made-up tale, we have to explain why it appears to make sense as
a voyage in the Atlantic Ocean. If we say the story describes a real voyage
because we can interpret apparently supernatural events as really being
natural, we have to explain the things that do not fit so easily. What this
means is that we need to help students consider what kind of story they are
dealing with. Doing so raises matters that not all fourth graders can grasp,
but it is worth introducing them here even though we will need to return to
them in other lessons on other topics. Indeed, none of the ideas dealt with
in this material can be assumed to stay with students after just one lesson; all
need to be woven into a series of lessons.14

The goal here is to help students understand that if we are to know what
weight this story can bear as evidence of Brendan’s reaching America, we
need to know what its writer was trying to accomplish and the conventions
of the time (see Box 3-8). If it is a story intended to show what a splendid
saint Brendan was, we should expect it to be “embroidered” with supernatu-
ral events whether they had a natural basis or not. Just because we treat
magical events as implausible, we should not expect people then to have
done the same. Indeed, as a story about a saint, it would be highly implau-
sible without such events. If the students now look at some more evidence,
we can ask, “What sort of story is this?”
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The tendency to assume that people in the past shared our ways of thinking and
acting has been found among students in Canada as well as in the United States
and the United Kingdom.

Peter Seixas asked Canadian tenth graders to watch selected scenes from
two popular films dealing with the relations between Native Americans and whites
in the 1860s—The Searchers and Dances with Wolves.15  The 10 students were
asked to explain the differences between the films and to say which gave a more
accurate picture of life for Native Americans and for the whites in the west in the
1860s.

The interpretative framework of Dances with Wolves coincided with students’
own assumptions: they agreed with its portrayal of Indian and white lives and the
picture it gave of relationships between the two groups, and they saw its modern
cinematic techniques and the “realistic” portrayal of how people act as making it
more believable. Having limited knowledge of the topic, in assessing the film they
fell back on their general knowledge of human nature and their sense of a believ-
able narrative. Seixas suggests that, “Ironically, the more a ‘historical’ film pre-
sents life in the past as being similar to life in the present, the more believable it is
to these students.”

The Searchers, with its dated cinematic conventions and acting, provoked the
students into thinking about the status of the film, whereas when they had watched
Dances with Wolves they had treated it as a window on the past. The conventions
of The Searchers were dismissed as “the more primitive techniques of an earlier
age,” but students had more difficulty dealing with its interpretative stance. Seixas
emphasizes the importance of confronting students with interpretative stances
that differ from their own as a means of challenging and developing ideas about
historical films by making the apparent “transparency” of films that accord with
our present preconceptions more problematic.

BOX 3-8 We Can Believe Historical Films When People in Them Behave As
We Would

What are writings from those days (500–1000) usually like?

They generally don’t give many of the details we might expect
(times, dates, or where things happened) and are often vague about
exactly what happened. When they give details, they often say dif-
ferent things about the same event.

Often people who wrote in these times weren’t trying to get the
details right. They weren’t writing news reports. They might have
been trying to show how a good person ought to live, or how God
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helped good people and punished bad ones. Other times they might
be telling the story of a great hero.

A very common sort of Irish story was the “imram,” which was a
made-up tale about a sea voyage. People liked hearing such stories.
But most imrams were probably written later than the time when
the story of St. Brendan’s voyage was written.

Some people think “The Voyage of St. Brendan” is different from
the usual writings of the time. For instance, one lady who is an
expert on writings from 500 to 1,000 is puzzled because “The Voy-
age of St. Brendan” doesn’t keep going on about Brendan doing
miracles. She says that when writings from this time are about
saints, most of them make sure to have the saint doing lots of
miracles. (That is because they wanted to show how good a saint
he or she was, and how powerful God is.) But in “The Voyage of St.
Brendan,” Brendan doesn’t do miracles himself.

The material demands a good deal of thought, but with some guidance,
fourth-grade students can begin to incorporate it into their arguments:

Bill I wonder what the entire thing comes to? Nine
years and 7 years and 40 days and another 40
days and . . .

Teacher It adds up to a long time, yes, but it’s a bit like
. . .  What about it saying the iceberg reached
the sky, the crystal column reached the sky?

Naomi It means it’s really tall.

Teacher So when it says 40 days and 40 nights?

Steve It means really long.

Teacher I mean, if they’re not trying to tell us how long
something takes, then maybe it’s a mistake for
us to say, “Hang on, lets add all these up and
see what they come to,” because they’re not
even trying. It’s a bit like stories about “Long,
long ago. . . .”

Bill They don’t actually tell us when it was, do
they? So it’s a bit like this, they don’t actually
tell us how long the journey was.

Teacher That’s right. That’s what it says here in this bit
look [pointing to the students’ sheet]—What
are writings like in those days?—most stories
were like that in those days, they didn’t give all
the exact figures, they didn’t have to add up.

Bill Yeah.
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We can now introduce the notion of “embroidering” a story as changing
the way it is presented to make it more acceptable to its audience and ask,
“Why do people embroider stories? Might people at the time this story was
written have had different reasons from ours for embroidering?” We should
try to avoid introducing such words as “exaggerate” or “distort,” and espe-
cially such ideas as “making it exciting.” These notions would preempt the
everyday ways in which students will already be thinking about the audi-
ence, exemplified in the following fourth graders’ exchange:

Teacher What sort of story do you think it is?

Steve A legend, or [pauses] . . .

Teacher Why would somebody have written a story like
this?

Steve To be famous?

Bill Or he could make a profit on it selling his story.

The issue here is that our embroidering of a story may be done in
different ways and for different reasons from those of people at the time the
story took its present form. Our questions must help students rethink their
assumptions: “Who is the hero of this story? What sort of person is he? What
were saints supposed to be like? If you believed in miracles and supernatu-
ral events, what would tell you if someone was a saint? What could someone
writing this story (more than a thousand years ago) put in it that would show
everyone Brendan was a saint?” Finally, we can ask, “Would embroidering a
story like this one make it more or less plausible to people living then?
Why?”

At this point we are asking students to grasp, albeit in a simple way,
first, that people in the past thought differently from us, and second, that to
make sense of what we want to use as evidence, we have to understand
how they thought. In doing so, we are touching on empathy, and we need
to remember what ideas our students are likely to be working with. Many of
them will willingly recognize that people then believed in supernatural events,
but see this simply as proof that in those days, people were pretty stupid
and therefore gullible (see Box 3-9). Such a deficit view of the past (see also
Chapter 2) does not necessarily stop third graders from beginning to under-
stand that the Brendan story may be rather different from a modern travel
account.

Teacher What sort of story was he trying to write?

Ricky It might be one that he thought, like, if it was a
volcano that he made it like people throwing it,
so like volcanoes are natural things, and he
changed them to people, and that, Jesus and
everything else like that.
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The idea that people in the past could not do what we can and were not as
clever as we are is very stubborn, even in the face of strong pressure. It is
worth quoting part of a long exchange among fourth graders to show just
how stubborn.

Teacher Could we learn anything from the Brendan
story that it’s not trying to tell us?

Carly They weren’t very clever.

Teacher Why?

Carly ’Cos they couldn’t make oars, to row the boat.

Jeff: They did use oars, in the picture.

Carly Oh, did they? [finds picture] Oh yeah!

Teacher What do you think then, do you think people
then were not as clever as us, or about the
same, or cleverer, or what?

Jeff They can’t figure out about volcanoes, and
icebergs, and that.

Teacher So they’re not as clever as us?

Jeff No.

Teacher You all think that then, do you?

Carly Not as clever.

David Technology [points to mini-disc recorder] . . .

Teacher Does that make me cleverer than you?

David The people who made it.

Teacher So you can make one of those, can you?

All No.

Teacher So you’re as stupid as they were, are you?

Carly [Laughing] No!

David We know how to use it.

Carly They didn’t know how to use it.

BOX 3-9 The Deficit Past

Teacher Why would he want to do that?

Ricky So it’s more interesting, and something to do
about God.

Teacher Why would he want to make it something
about God?
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Teacher So do you think that if I had Brendan here, it’d
take more than 5 minutes to teach him how to
make it work?

Carly No, he’d probably get it straight away, but he
couldn’t [pauses] . . .

Teacher This man may have got to America. He could
write in Latin—can you write in Latin?

All No.

Teacher Well, are you stupider than Brendan then?

Carly No, but he can’t write English!

Jeff Yeah!

Teacher So not being able to write English or Latin
doesn’t make you stupid. So why does
knowing which buttons to press on one of
those make you cleverer than Brendan?

Carly We’re making cars, and they just had to walk.

Teacher And that makes them stupid?

Carly No . . . [Laughs]

Jeff: Not as clever.

Teacher What do you mean by being “clever” then?

David Smart.

The connection between willingness to underestimate people in the
past and a deficit picture of the past derived from a technological idea of
progress is quite apparent here. The students repeatedly accepted that
their argument was inadequate, but kept returning to it anyway. This ex-
change continued for some time, but there was little sign that it did any
more than modify the edges of the students’ ideas. Deeper changes re-
quire specifically targeted tasks and frequent return to the issue in a vari-
ety of contexts.

Ricky ’Cos he said he’s a Man of God.

Teacher Why try to find the Land of Promise? Why go
to all this trouble?

Lenny Because monks are normally very, worship
God a lot, and the Island of Promise was to do
with God too.
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Teacher Why do you think somebody would write this
story then? What do you think they were trying
to show?

Lenny They were trying to show that Brendan was a
special man.

Teacher And what sort of special?

Lenny Well, sort of, holy.

By the seventh grade, many students should be trying to use their un-
derstanding of the world in which people lived and the beliefs and values of
the people they are studying to explain the things these people did, not just
dismiss them.

Teacher What does the story tell us about the person
who actually wrote it? Is there anything we can
work out?

Trudi I think the person who wrote this down
believed in God quite strongly, because all the
time he’s referring things back to God, and that
may be from mistakes, or what he’d heard, or
been told, but I think if they didn’t believe it
then they wouldn’t have written it down quite
so much; it seems very likely they were very
strong believers in God.

Haley I think he probably wanted them to think,
“Wasn’t God great,” probably, or something
like that, or saying like, “God’s really good,
look what he’s done, they’ve reached
America,” and stuff like that. I think he wanted
the audience to think about God.

Trudi He wanted the readers to realize that if you’re
good and you worship God, then he’s going to
be there for you, and he’ll look after you, but if
you don’t, then he won’t take care of you,
because it seems very certain that they
thought that and the reason why he found all
these places or visited all these places was
because God was looking after him.

Jane I think that, it seems like the sort of story that
was meant for, maybe like, village people who
were at church or something, instead of having
a Bible reading, maybe having this, getting the
message across to them that religion was very
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important and they should believe in that,
rather than just for maybe like a child reading
it for a bedtime story or someone reading it as
a book.

It is important, however, not to assume that only older students can
think like this. After his group had worked through the material with his
teacher, Don, a third grader, expressed the understanding he had achieved:

Teacher So if the story’s written like that, for that sort of
reason, does that mean it can tell us more, or
tell us less, or what?

Jilly Probably about the same.

Don It probably makes it like more, because without
God doing miracles, people who weren’t
saints, they would say, Brendan ain’t a saint,
’cos God didn’t do miracles for him, so without
God, being a saint, I reckon it’d be less, but if
Brendan’s a saint and God does stuff for him, I
reckon that story must be more [believable].

We are now dealing with matters that are difficult for most fourth grad-
ers, so we can give them some help in the form of some possibilities to talk
about. “What sort of story are we dealing with here? Have a look at these
suggestions, and decide which you agree with and which you don’t: (a) It is
just a religious story about what a holy man St. Brendan was, showing what
wonderful things he did to find the Land of Promise that was special to God.
(b) It is a story about a real voyage that St. Brendan made to America. (c) It
is a story based on real events, but meant as a religious story about how holy
St. Brendan was. (d) It is an ‘imram’—just an exciting made-up voyage story.”
We have to be careful here about the grounds on which students are making
their choice. Some fourth graders choose (a) because the sentence gives
details of what is in the story, even when they are thinking something more
like (c). But once the alternatives have been clarified, students can make
some penetrating points. Helen, a fifth grader, wrote:

I think it is (c) because he wasn’t all that holy [not enough,
presumably, for (a)] and for (b) it wasn’t all real like the
talking birds, but you could make sense out of that. He
wasn’t being real holy and I just think that it is based on real
events and he misinterpreted some things and he thought
some things were supernatural sort of things instead of
natural things.
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Andy, an eighth grader, chose (c) and explained: “Because I think that
this story could have happened (the geography at least), but I think that
religious influence was then added to show the power of God/St. Brendan.”

The task can be ended here with a return to the big question: “Did an
Irish monk land in America about 1000 years before Columbus?” But a fur-
ther step is possible if there is time and the students are sufficiently engaged
in the problem.

Possible clues as to whether Brendan reached America—what’s been
found in Iceland.
Historians know that:

• Long after Brendan’s time (about 870) the Vikings started to
settle in Iceland. They found Irish monks there.

Possible clues as to whether Brendan reached America—what’s been
found in Greenland.
Historians know that:

• When the Vikings first reached Greenland in about 982, they
found the remains of a skin-covered boat and some stone huts.

• The Inuit used skin-covered boats.
• The Inuit usually dug homes out of the ground, and didn’t

use stones to build them.
• At the time the Vikings arrived, the Inuit may not have reached

southern Greenland.

Possible clues as to whether Brendan reached America—what’s been
found in Vinland.
Historians know that:

• The Vikings reached Vinland (their name for the northeast
coast of what we call Canada and America) between 986 and 1000.
They met people who told them about strange men who wore white
clothes and walked in a procession carrying poles with white cloths
fixed to them, yelling loudly. The Vikings assumed they meant
Irishmen.

• The Vikings called part of Vinland “White Man’s Land,” and
another part “Greater Ireland.”

• Later one Viking met people speaking a language he didn’t
understand. He thought it was like Irish.

• Carvings have been found on a rock in West Virginia that
look similar to ancient Irish writing. One expert in old languages
thinks they are ancient Irish writing. He thinks they say, “At the
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time of sunrise the sun’s rays just reach the notch on the left side,
when it is Christmas Day.” (A “notch” in the rock is a line cut in the
rock.)

Which clues fit with which?

Timeline Key

Things about Brendanwords underneath line

Things that were also happeningwords above line

                 Vikings first settle     Vikings settle

      

in
 
Iceland around                  

        this time

    

500 600          700         800                     900       1000

__________________________________________________________

         _           _               _

          St. Brendan alive    Brendan story might            Brendan story probably
during this time    have been written down       

as early as this sometime around this time
first written down

in Greenland

Having made some progress in deciding what kind of story St. Brendan’s
voyage is, we can go back to looking at other things we know might help in
answering our big question. The clues include some quite shaky evidence
(we do not have to use all the clues in the example here), and students tell
us a great deal about their assumptions as they decide what the evidence
shows (see Box 3-10). Students’ ideas about the strength of this broader
evidence are not easy to predict. They depend on understandings and as-
sumptions about how people behave, how long physical objects survive,
the rates at which languages change, and what importance the students
attach to “usually” or the views of one “expert.” But these are precisely the
things we need to bring out at this stage.

A common fourth-grade response is to focus on the content and main-
tain that the new evidence does not help “because it’s all about the Vikings.”
Insistence on looking carefully at the timeline and thinking about what the
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Keith Barton’s work with young students in history suggests that they
shrink the scale of human activities and reduce long-term processes to
events or individual actions.16  The spatial shrinkage is evident in the fol-
lowing example from the Brendan task:

Sonny  I would like, go on a search underwater to look
for [Brendan’s] boat, it might’ve sunk.

Charlene I’d do what Sonny did, but I wouldn’t go in a
boat, I’d go in a submarine, ’cos you  wouldn’t
sink and die. [third grade]

This is a frequent kind of strategy for finding remains, and despite
Charlene’s practical solution, the scale of the Atlantic and the task is hugely
underestimated.

Teaching the Brendan material also produces signs of temporal shrink-
age, even with older students, and sometimes a tendency to reduce a
series of events to single occurrences. Some cases are very clear. “I didn’t
know there were people a thousand years before Columbus,” said one
eighth grader, “I thought there were just dinosaurs.” Some are more subtle:

Anna Seeing this other evidence I think that they did
get to America, because the Vikings found Irish
monks in Iceland, and they might have stayed
on the way to America, they might have
stopped and some people stayed there . . . .
[seventh grade]

BOX 3-10 The Shrinking Past

Vikings found can shift students’ positions here. But although they can see
relevant issues, they do not always find it easy to produce explanations.

Bill Maybe Brendan got to America on Christmas
Day, because it’s saying at the time of sunrise a
ray grazes the notch on the left side on Christ-
mas Day.

Teacher Who could have carved it?

Bill They [the Native Americans] weren’t really
Christmas Day sort of religious people.

Teacher How else could it have got carved there then?
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Bill Maybe somebody got there before Brendan.

Teacher What do we need to know?

Bill We need to know it’s definitely Irish writing
and it definitely does say that, not . . .

Teacher And we need to know one other thing as well
. . . Think about what you said right at the
beginning, that made you suspicious of the
story, when you saw the timeline.

Bill Oh! What time it was.

It is difficult to see why Anna should think these are Brendan’s monks.
Why should it be the same group of monks? Is it not more likely that
there has been more than one voyage? A teacher using the material com-
ments that (after looking at what the Vikings found in Iceland) her eighth-
grade students thought in a similar way with a diametrically opposite
conclusion. They “wondered how Irish monks could be at an island 300
years later. They pointed out that there were no women on the island, so
how could the community of monks have been continuous since St.
Brendan.”

Jane (seventh grade) may be making similar—past shrinking—
assumptions:

Jane It says that the Inuit usually dug homes under
the ground and didn’t use stones to build
them, and when Vikings first reached
Greenland in 982 they found the remains of a
skin-covered boat and some stone huts, and
this probably suggests that it could have been
the monks that were there, and the stone huts
would have probably survived.
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Seventh graders are usually more skeptical about the Vikings’ supposed
recognition of the Irish language, often making comments such as “It may
not necessarily have been Irish. It could’ve been any other language.” But
although they can come up with explanations for the rock carving, they can
still find it difficult to envisage alternatives.

Haley There’s some carvings been found on a rock, in
erm, Ancient Irish writing, I think that might
have something to do with it, if Irishmen were
writing on stones then it probably was the
monks, who were there, I don’t know who else
it could be really.

Jane I agree with Haley, I don’t think somebody’s
going to go to a stone now and write Ancient
Irish on it.

The inferences here are fine, provided we rule out more recent fraud or
the possibility of simple overinterpretation of marks by people who, like
many of the fourth graders, want St. Brendan to have made it to America. If
such overinterpretation is a fault, however, it is not one that betrays concep-
tual weaknesses in connection with understanding evidence, but perhaps an
understandable degree of optimism and excitement.

As a final step, we can ask some questions designed to see what more
general ideas the students are using by the end of the task. “What would you
say to someone who said: (a) We can’t say anything about this. (b) We
weren’t there, so anyone can say what they want. (c) We either have to
believe the Brendan story or we have to trash it.” For fourth graders, we are
likely to be quite satisfied if we get responses suggesting that we have had
some impact on their everyday ideas. If we can effect a shift such as that
evident in the responses of these fourth graders between the beginning of
the task and the end, our students will have made valuable progress.

Ideas at the beginning of the topic:

David You can’t get it right because none of us know.

Teacher Why do none of us know?

David Well, like everyone’s guessed.

Teacher And why are we guessing?

David Because we don’t know what he really did.

Teacher And why don’t we know?

Jeff Because we weren’t there at that time.

Ideas toward the end of the topic:
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Jeff [If we interpret it naturally] half of it makes
sense.

Teacher So if we can’t say, “It’s impossible that
Brendan reached America,” what can we
safely say?

Jeff Inconclusive.

Teacher Supposing someone said, “If no one left us the
true story, we can’t know?” Do you agree with
that, or disagree with it?

David Disagree.

Jeff No, ’cos there’s lots of evidence.

(Note that Jeff had not used “inconclusive” before this point, and the word
had not been taught.) In response to the final questions, the students take a
similar position, and Jeff’s last comment in this excerpt could almost sum up
our teaching goals for the whole unit:

Teacher What would you say now, after working
through this, to someone who said, “We can’t
say anything about this?”

Carly We could find out about it.

Teacher OK, what about the second thing, “We weren’t
there, so anyone can say what they want?”

David Nonsense! ’Cos there’s evidence, so you can,
say . . .

Teacher So you can’t say just what you want? You have
to say . . .

David The truth, what you found out.

Teacher Has the evidence shown you the truth, or . . .?

David It helps you.

Teacher OK, what about the last one, “We either have
to believe the Brendan story or we have to
trash it?” What about that one? Is that right or
not?

David No.

Jeff In the story, there are some things that make
sense, you don’t have to trash it, you just have
to make sense.

Research and experience suggest that understandings such as those dis-
played by students in the fourth-grade study of St. Brendan’s voyage are
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likely to transfer to higher grades and to different topics.17  Students who
have such learning experiences will be better prepared for the study of the
Pilgrims in a later grade. Developing students understanding of core, sec-
ond-order concepts in history will be more effective if that development is
planned across the years. In fact, our most important conclusion is that
successfully achieving an effective integration of conceptual (second-order)
understanding and content coverage, as emphasized in How People Learn,
can best be achieved with planning of history teaching across grades 4 through
12. Individual teachers can achieve important shifts in student thinking, as
we see in the lessons described above. But student progress and teacher
effectiveness will be far greater if those who determine the agenda for his-
tory teaching across the school years do so with careful attention to the
progression in student understanding of both second-order concepts and
content coverage. An illustration of how such planning might be accom-
plished is provided in Appendix 3A.

APPENDIX 3A
IMPLICATIONS FOR PLANNING

Student learning in history will best be supported if instructional plan-
ning across the school years includes both second-order concepts and con-
tent coverage. Planning for progression in students’ mastery of the two,
however, differs in several critical respects. The sequence of substantive
topics that we plan to address may be ordered by reference to chronology,
theme, and scale. We offer an example across 4 years for illustrative pur-
poses:

Grade 4: The First Americans: Origins and
Achievements

Worlds Apart: Europe, Africa, and Asia before
the Voyages of Exploration

Grade 5: The Great Civilizations of Pre-Columbian
America

The Voyages of Exploration: First Contacts
among Native Americans, Europeans, and
Africans

Grade 6: Spanish and Portuguese Conquests

Early English Colonization: The Pilgrim Fathers

Grade 7: Government and Liberty in the Early American
Colonies

The American Revolution
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Such a plan dictates what is to be addressed; when the teacher is to do
so; and, within limits, how long it should take. A topic such as the Pilgrim
Fathers, for example, will be taught once and once only at the elementary
level or in junior high school. It is likely to be taught to all students in a
given grade. And, after a given period of time, all students will move on to
a new topic without reference to how much they have or have not learned
about the Pilgrim Fathers.

Planning for progression in second-order concepts is different. It is in-
formed not by our selection of particular passages of the past for study, but
by models of progression based on systematic research and on classroom
experience of the kind illustrated in the discussion of the Pilgrim Fathers and
St. Brendan’s topics. These models are hierarchical and describe significant
stages in the development of students’ thinking over time. A model of pro-
gression for the second-order concept of evidence is given in Box 3A-1.

We should remember that what is presented in Box 3A-1 is a model and
not the model. There is no such thing as a definitive model for evidence or
for any other second-order concept, although all research-based models
are—or should be—compatible. They may vary, however, in the number of
levels they include and in the emphasis given to different aspects of stu-
dents’ thinking. Nor do these models prescribe or describe the ways in which
the ideas of any individual student should or will develop. They are gener-
alizations applicable to the majority of students that appear to be sustainable
across generations and nationalities. They may be compared with footpaths
across a mountainside: these footpaths exist because most walkers have
elected to follow a given route across the mountainside; not all walkers will
have done so, and more than one trail may lead to the desired destination.

A teacher who leads a school party may plan to take students along a
chosen path rather than to allow each to find his or her own way across the
mountain. Most would find this to be a wise decision even if some students
are disposed to seek out the more boggy areas and others to head for sheer
rock faces. This analogy breaks down in one crucial respect, however: while
it is possible to march students along a mountain trail in reasonably good
order, students will move through the levels of a model of progression at
very different speeds. For example, they may jump one level altogether,
moving straight from level 3 to level 5. Indeed, by tenth grade some students
will have moved beyond level 6 of the model in Box 3A-1, while others will
remain at level 2. It follows that levels of conceptual understanding cannot
be attached to grades or to topics, and that some students will have to repeat
work at quite similar levels of conceptual challenge when they change top-
ics, while others will be able to move on to tackle new and more demanding
conceptual problems.

This point is illustrated by a comparison of the responses of the sixth-
grade (Pilgrim Fathers) and fourth-grade (St. Brendan) students presented
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1. Pictures of the past

The past is treated as if it is the present; students treat potential
evidence as if it offers direct access to the past. Questions about the
basis for statements about the past do not arise. Stories are just stories.

2. Information

The past is treated as fixed and known by some authority; students
treat potential evidence as information. Given statements to test against
evidence, students match information or count sources to solve the prob-
lem. Questions arise about whether the information offered is correct or
incorrect, but no methodology is attributed to the study of history for an-
swering such questions beyond an appeal to books, diaries, or what has
been dug up. These sources, although sometimes seen as being con-
nected with the past, provide transparent information that is either cor-
rect or incorrect.

3. Testimony

The past is reported to us either well or badly, by people living at the
time. Questions regarding how we know about the past are regarded as
sensible; students begin to understand that history has a methodology for
testing statements about the past. Conflicts in potential evidence are
thought appropriately to be settled by deciding which report is best. No-
tions of bias, exaggeration, and loss of information in transmission supple-
ment the simple dichotomy between truth telling and lies. Reports are
often treated as if the authors are more or less direct eyewitnesses—the
more direct, the better.

BOX 3A-1 Model of Progression in Ideas About Evidence

above. On the whole, the sixth-grade students operate at a higher concep-
tual level than those in the fourth grade, but the conceptual understanding
of some fourth-grade students is more advanced (relative to the model of
progression in Box 3A-1) than that of some sixth-grade students. This obser-
vation may appear to argue against the wisdom, or even the practicability, of
planning for the progression of understanding with respect to second-order
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4.  Cut and paste

The past can be probed even if no individual reporter has told us
truthfully or accurately what happened. We can piece together a version
by picking out the true statements from different reports and combining
them. In one student’s words, “You take the true bits out of this one, and
the best bits out of that one, and when you’ve got it up, you’ve got a
picture.” Notions of bias or lies are supplemented by questions about
whether the reporter is in a position to know.

5. Evidence in isolation

Statements about the past can be inferred from pieces of evidence.
We can ask questions of sources that they were not designed to answer,
so that evidence will bear questions for which it could not be testimony.
There are many sources of evidence that are not reports of anything (nine-
teenth-century rail timetables, for example, were not constructed for the
benefit of historians). This means historians may be able to work out his-
torical facts even if no testimony has survived. Evidence may be defec-
tive without involving bias or lies. Reliability is not a fixed property of a
source, and the weight we can place on any piece of evidence depends
on what questions we ask of it.

6. Evidence in context

Evidence can be used successfully only if it is understood in its his-
torical context: we must know what it was intended to be and how it
relates to the society that produced it. Making this determination involves
the suspension of certain lines of questioning and a provisional accep-
tance of much historical work as established fact (a known context). We
cannot question everything at once. Contexts vary with place and time (a
sense of period begins to be important).

concepts. If students cannot be kept together, why not allow them to make
their own way across the conceptual mountainside?

There are several answers to this question. First, all students may be
expected to make more rapid progress if we plan to take them along a given
trail rather than leaving them to find their own way. Second, if trails are
made explicit, students may grasp (and, it may be hoped, become
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metacognitively aware) that they are expected to walk across the mountains
rather than play in the foothills and watch the clouds drift by. After all, this
is what paths are for—for walking from here to there. If we plan to achieve
progress in students’ ideas about evidence, change, and so on, students may
become aware that their understandings must develop irrespective of changes
in the factual scenery as one topic succeeds another. Third, if we plan to
achieve progress in students’ conceptual understanding in particular ways, it
is easier to anticipate the preconceptions and misconceptions that students
may bring to any topic. Doing so makes it easier for us to identify, to exploit,
and to remediate the ideas students use to make sense of the work at hand.
To return to the previous analogy, if we notice that we have lost a few
students, that they are no longer with us, it is easier to check back on or near
the trail along which we planned to take them than to scour the entire
mountain.

If these arguments are accepted, it remains to illustrate what planning in
conformity with the second key finding of How People Learn might look
like. Although planning should address the totality of history education from
fourth to twelfth grade and all relevant second-order concepts, a more mod-
est illustration may suffice.

As already indicated, history teaching at the fourth-grade level may cover
such topics as The First Americans: Origins and Achievements and Worlds
Apart: The Americas, Africa, Asia, and Europe before the Voyages of Explo-
ration. These topics are likely to be broken down into a number of units of
work intended to occupy 4-8 hours of teaching. The Worlds Apart topic, for
instance, might include the following units:

Unit 1: Filling the World with People
Unit 2: People Go Their Separate Ways
Unit 3: First Contacts: Did St. Brendan Sail from Ireland to America?
Unit 4: First Contacts: Why Didn’t the Norse Stay in America?

The topic aims to develop students’ understanding of a particular period
in history, that of the Voyages of Discovery. Students may be relied upon to
forget much of what they are taught; thus it is necessary to identify the
dates—usually for the key generalizations and understandings, rather than
for the details—that we wish them to retain. Teaching tasks and assessments
can then be focused on the transmission and development of these key
generalizations and understandings. What these are or should be is nego-
tiable. The Worlds Apart topic may focus narrowly, for example, on the
independent evolution of new and old world civilizations to provide the
students with descriptions and explanations of cultural misunderstandings
and clashes in the sixteenth and seventeenth centuries. An alternative ap-
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proach would aim to give students an understanding of the “one world”
revolution that began with the exploration, colonization, and commercial
exploration of the Americas and elsewhere, which may be seen as the start
of the process we now call “globalization.”

What may be less familiar is a stage of planning that goes beyond the
identification of key generalizations and, in accordance with the second
principle of How People Learn, also identifies key ideas about the second-
order concepts associated with evidence and accounts, change and develop-
ment, and empathetic and causal explanation that students use to make
sense of the those generalizations. For the units of work listed under the
Worlds Apart topic, teaching what we want students to learn with respect to
generalizations about the past may be combined with developing their un-
derstanding of second-order concepts along the following lines.

Unit 1: Filling the World with People

Target Generalizations Target Ideas
About the Past About Change

• Long ago there were only a • Things were not always as they
few people in the whole are now—they were different in
world. They all lived in a small the past.
part of East Africa. The rest of • All bits of the past were not the
the world was empty—no same. Some bits of the past were
people. more different from each other

• Very slowly these East Africans than from the present.
increased their numbers and • Not all differences matter, and
spread all over the world—to some are far more important than
the rest of Africa, Asia, others.
Australia, Europe, and the • When there are significant
Americas. differences between two bits of the

• We may look different and past, we say that things have
speak different languages, but changed.
we are all descended from the • When things are different in ways
same small groups of East that don’t matter much, we say that
Africans. there is continuity with the past.

• Some Native Americans are
descended from the first
groups of people to reach
North and then South America.
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It should be noted, first, that attempts to refine students’ understanding
of change, as of any other second-order concept, should not displace teach-
ing about the past, but will certainly affect the ways in which such teaching
takes place. The discussion of the Pilgrim Fathers’ and Voyage of St. Brendan
tasks illustrates the nature of this impact. It is not practical to address all
second-order concepts within a single unit of work. For this reason, the
conceptual focus of a set of units is likely to vary, as indicated below.

Unit 2: People Go Their Separate Ways

Target Generalizations Target Ideas About
About the Past Empathetic Explanation

• People forgot where their • People in the past saw things
ancestors had come from and differently from the way we see
knew only about other groups them today. (For example, their
of people who lived nearby. maps of the world do not look like
People who lived in Africa, ours.)
Asia, and Europe knew • People in the past had to be very
nothing about the first clever to achieve what they did. (For
Americans. People who lived in example, we would find it very
America knew nothing about difficult to make such good maps
those living in Africa, Asia, and charts using the same tools
and Europe. They also knew as our predecessors.)
nothing about most other • People in the past thought and
groups of Americans. behaved differently from us because

• Most groups of people had they had to solve different problems.
little contact with each other, (For example, a Portolan chart was
so languages and ways of life of more use to a medieval sailor in
became more and more the Mediterranean than a modern
different. atlas would have been.)

• Over long periods of time,
great but very different
civilizations developed in
Africa, Asia, the Americas,
and Europe.
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The target ideas in these units are informed by the model of progression
for evidence outlined earlier and, as previously argued, cover the range of
learning outcomes accessible to the majority of fourth-grade students. Some
students will still struggle to master these ideas in seventh and eighth grades,
whereas the understanding of others will have moved far beyond even the
most difficult of these ideas.

A final set of examples deals with the concept of causal explanation—
provided in Unit 4 on page 172.

In the examples given for the Worlds Apart topic, each second-order
concept is addressed once and once only. If two topics are taught at each
grade, it follows that each second-order concept will be revisited at least
once each year and that planning for systematic progression across grades is
possible.

The examples provided here are, of course, only an illustration of the
start of the planning process. Detailed planning with reference to content,
materials, and activities must flesh out the key generalizations and ideas
exemplified above. At the same time, our planning should also take account
of the other key findings of How People Learn. The planning grid presented
in Box 3A-2 shows how all three key findings might figure in planning to
develop students’ understanding of the concept of evidence, using the St.
Brendan and Pilgrims’ tasks as examples.

Unit 3: First Contacts:
Did St. Brendan Sail from Ireland to America?

Target Generalizations About Target Ideas About
the Past Evidence and Accounts

• In the past, many stories were • We can work out what happened
told about people sailing to in the past from what is left.
what could have been America. • Some things left from the past
One of these stories is about an weren’t meant to tell us anything,
Irish monk, St. Brendan. but we can still use them to find

• We cannot be sure whether things out.
St. Brendan really did sail to • The weight we can put on the
America. evidence depends on the questions

• We do know that even if St. we ask.
Brendan did sail to America, no • Often we can’t be certain about the
one followed him or knew how past, but we can produce stronger
to repeat his voyage. or weaker arguments about what

it makes most sense to say.
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The first column in the planning grid shows the content to be covered
and the key questions that organize that content. The key questions are
designed to allow us to bring together the content and the relevant second-
order understandings. Although there are two different topics—St. Brendan
and the Pilgrims—the questions for both the fourth- and sixth-grade work
are concerned with the same key question: “How do we know?” Teaching
will therefore need to focus on the concept of historical evidence. But deci-
sions will need to be made to ensure that the teaching is appropriate for the
age and ability of the students.

Before more precise teaching goals can be written into plans of this
kind, some consideration must be given to the first key finding of How
People Learn—that “students come to the classroom with preconceptions.”
In accordance with this finding, the planning examples for fourth and sixth
grades include in the second column of the grid likely preconceptions to be
checked out. These are planning reminders of the preconceptions about
evidence that research suggests students are likely to hold. At the same time,

Unit 4: First Contacts: Why Didn’t the Norse Colonists Stay in America?

Target Generalizations About Target Ideas About
the Past Causal Explanation
• The first definite contacts • Some things happen because

between Native Americans and people want and have the power
non-American peoples occurred to make them happen (e.g., the
when Norse sailors and colonists colonization of Iceland and
landed and attempted to settle Greenland).
in North America. • Other things happen that people

• The Norse were trying to do don’t want and try to prevent (e.g.,
what they had done before—to the Norse eviction from North
find and to settle in empty land. America and the later destruction

• But America was not empty. It of the Greenland colonies).
was already full of people • Explanations of why people do
about whom the Norse knew things are not always the same as
nothing. The Native Americans explanations of why things
fought the Norse and threw happen.
them out of the country. • To explain why things happen, we

sometimes refer to causes that
people can’t or don’t know how to
control (e.g., climate changes,
differences in population size and
density).
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we must keep in mind the range of ideas we are likely to encounter at any
age. The point is not that all students will think the same things, but that we
might expect to find ideas such as these among most fourth- or sixth-grade
students, depending on what has been taught before. So if our sixth graders
have already done the St. Brendan task, as well as similar work designed to
develop their understanding of evidence in the context of other topics, we
would expect that many of them already understand the preconceptions
listed as needing to be considered in the Pilgrim Fathers’ task. If the students
have done no such work, we would be safer to anticipate their still holding
some of the preconceptions listed under the Brendan task when the time
comes to tackle the Pilgrims’ task.

The preconceptions listed in Box 3A-2 for both grade 4 (ideas about
sources as information or as testimony) and grade 6 (ideas about sources as
evidence in isolation) relate to the progression model for evidence (Box 3A-
1). That model also provides a framework for thinking about teaching tar-
gets; in Box 3A-2, the third column for both grades 4 and 6 sets forth the key
conceptual understandings to be taught, in line with the second finding of
How People Learn. These understandings build the preconceptions listed in
the previous column, and are intended to ensure that our teaching enables
students to consolidate or extend their previous learning. Thus, whereas the
St. Brendan task targets some rather broad principles about the use of evi-
dence that make history possible, the Pilgrims’ task concentrates on impor-
tant ideas about how inferences can be drawn from testimony, ideas that
allow students to consolidate their understanding of evidence. The Pilgrims’
task also sets a planning target for extending students’ understanding by
introducing ideas about situating evidence in the broader context of the
society from which it comes.

If the St. Brendan grid and the Pilgrims’ grid are examined together, the
relationship between the preconceptions to be checked out and the key
conceptual understandings to be taught becomes evident. It is this relation-
ship that is crucial for ensuring that progression in students’ understanding
takes place. The evidence progression model (Box 3A-1) provides an aid to
planning here. For example, it is important for a sixth-grade teacher to know
not just what content has been taught to students in previous grades, but
also what conceptual understandings have been gained. If colleagues are
guided by common planning, such knowledge of students’ understanding is
likely to be a more realistic goal.

The key point here is that when students move from one topic to an-
other, they should also be given the opportunity to move forward conceptu-
ally. It is important for teachers to have a sense of the possible progression
for students. In addition to supporting the kind of planning that ensures
students are given work appropriate to their abilities, this kind of knowledge
can help in dealing with the range of abilities that are likely to exist within
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Key Key Key
Finding #1 Finding #2 Finding #3

Preconceptions Key conceptual
Key questions to be checked understandings Metacognitive
and content out to be taught questions

Grade 4 (St. Brendan task)

How do we know? Sources as Sources as

information evidence in

isolation

St. Brendan: • The past is • We can work • Am I clear
Did an Irish monk given. out what what question
reach America • We can’t know happened in I’m asking?
1000 years before about the past the past from • Do I know
Columbus? because we what is left. what kind of

weren’t there. • Some things thing this is?
Substantive left from the • Do I know
content Sources as past weren’t what the writer

testimony meant to tell is trying to do?
• Irish voyages • We can find us anything, • Does my

out something but we can argument work
• Viking voyages about the past still use them for the hard bits

from reports to find things as well as the
that have out. easy bits?
survived. • The weight

• If no one told we can put
the truth on the
about what evidence
happened, depends on
we can’t find the questions
anything out. we ask.

• Often we
can’t be
certain about
the past, but
we can
produce
stronger or
weaker arguments
as to what it
makes most
sense to say.

BOX 3A-2 Planning for Progression in Ideas About Evidence
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Grade 6 (Pilgrim Fathers’ task)

How do we know? Sources as Sources as • Are my questions
evidence in evidence in the same as other

How do we know isolation isolation people’s?
about the arrival of • We can work • To use • How do the
the Pilgrims in out what testimony differences in our
America? happened in the as evidence, questions affect

past from what we need to take the way the
is left. into account the sources can be

Substantive • Some things circumstances used?
content left from the in which it was • Can the sources
• Separatism past weren’t produced. answer my
• Early English meant to tell us • Testimony can questions? What

colonization anything, but unintentionally other kinds of
• The Pilgrim we can still reflect the ideas sources will I

Fathers use them to and beliefs of need?
• The Plymouth find things out. those who • Do I know the

Settlement • The weight produced it and circumstances in
• The Wampanoags we can put on still be valuable which this source

the evidence as evidence for was produced?
depends on the historians. • Do I understand
questions • People can what beliefs or
we ask. produce values might

• Often we can’t representations make the writer
be certain about of past events see things in the
the past, but we that are not way he or she
can produce necessarily does?
stronger or intended as • How do those
weaker reconstructions. beliefs and values
arguments as affect the way I
to what it Sources as can use this as
makes most evidence evidence?
sense to say. in context

• Inferences from
sources must
take account of
their cultural
assumptions.
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any one class. If the fourth-grade teacher understands the learning plans of
the sixth-grade teacher, it becomes possible to introduce some ideas earlier
for students who may benefit. It may also be important for the sixth-grade
teacher to be able to reinforce understandings that have been taught earlier
but are shaky for some students.

The third key finding of How People Learn—that “a metacognitive ap-
proach to instruction can help students learn to take control of their own
learning by defining learning goals and monitoring their progress in achiev-
ing them”—is also an important aspect of the planning process. The last
column on the planning grids in Box 3A-2 lists the metacognitive questions
adopted for these units of work. It is clear that these questions are closely
related to the kinds of understandings we are trying to develop in students
and can help raise their consciousness of what is at issue when using evi-
dence. Questions of this kind increase students’ awareness of the knowl-
edge and understanding they have, and enable them to see that some an-
swers to questions actually solve problems while other answers do not. This
kind of awareness helps students recognize that answers provided by other
students are relevant to the problems they themselves faced in their attempts
at answers. Planning of the kind exemplified here that links questions to key
second-order concepts can help teachers develop these questions into full-
fledged metacognitive strategies. Moreover, metacognitive questions have
additional advantages. Students’ use of such questions allows their teachers
to gain insight into their understanding and their misconceptions and thereby
take advantage of learning opportunities that arise in the classroom, and to
think about the kinds of adjustments that will be necessary in day-to-day
planning to support individual learning needs, as well as longer-term goals.

The planning principles discussed here for fourth and sixth grades with
respect to evidence would, of course, need to be extended to other second-
order concepts and to other grades to enable the formulation of a long-term
plan for a school history curriculum. These principles provide a structure for
systematically revisiting ideas that inform all the history we want our stu-
dents to learn, regardless of the topic. Such ideas are at the heart of history.
They introduce students to the possibility of treating accounts of particular
passages of the past as better or worse, more or less valid, in a rational way.
History such as this does not succumb to vicious relativism on the one hand
or to fundamentalism on the other. Rather, it exemplifies the central values
of an open society.
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NOTES
1. Examples of research in history education confirming this principle include

Shemilt (1980) and Lee and Ashby (2000, 2001). Experience with a series of
curriculum changes (the Schools History Project, the Cambridge History Project,
and, more recently, the National Curriculum for History) and public assess-
ment of students’ work in the United Kingdom have provided additional con-
firmatory evidence.

2. We would like to thank the students and teachers in schools in Essex and Kent
in England, and in Oakland (California) in the United States who took part in
trials of the two tasks presented in this chapter. All names in the text are
pseudonyms, and U.K. “year groups” have been converted into U.S. “grade”
equivalents; for example, U.K. year 7 pupils are given as grade 6. While this is
only an approximate equivalence, research (e.g. Barton, 1996; VanSledright,
2002, pp. 59-66) offers examples of ideas very similar to those found in the
United Kingdom, and responses to the second task in the two countries sug-
gest that differences between education systems do not invalidate the approxi-
mation.

3. Lee and Ashby, 2000.
4. For research on student ideas about evidence, see Shemilt (1980, 1987) and

Lee et al. (1996).
5. Todd and Curtis, 1982.
6. Jordan et al., 1985.
7. Wineburg, 2001.
8. Dickinson and Lee, 1984; Ashby and Lee, 1987.
9. Shemilt, 1978.

10. Shemilt, 1980, 1987; Lee et al., 1996.
11. VanSledright, 2002.
12. Leinhardt, 1994.
13. The teaching material was inspired by and is indebted to Tim Severin’s book

describing his “Brendan Voyage.”
14. Leinhardt, 1994.
15. Seixas, 1993, 1994.
16. Barton, 1996.
17. Shemilt, 1980.
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4
“They Thought the World Was Flat?”

Applying the Principles of How People
Learn in Teaching High School History

Robert B. Bain

For at least a century, educational critics and school reformers have
pointed to high school history teaching as the model for poor and ineffec-
tive pedagogy. Consider, for example, the introduction to a series of nine-
teenth-century books on teaching written by psychologist G. Stanley Hall:

History was chosen for the subject of the first volume of this educational
library because, after much observation in the schoolrooms of many of the
larger cities in the eastern part of our country, the editor . . . is convinced
that no subject so widely taught is, on the whole, taught so poorly, almost
sure to create a distaste for historical study—perhaps forever.1

History education, Hall observed, involved generally unprepared teachers
who used ineffective methods to turn history into the driest of school sub-
jects. “The high educational value of history is too great,” Hall explained, “to
be left to teachers who merely hear recitations, keeping the finger on the
place in the text-book, and only asking the questions conveniently printed
for them in the margin or the back of the book.”2  In a call to instructional
arms, Hall and other late-nineteenth-century reformers urged teachers to
move beyond lecture, recitation, and textbooks, asking them to “saturate”
history teaching with more active historical pedagogy.

Most subsequent educational critics have shared Hall’s concerns about
the quality of history instruction and embraced the recommendation that
teachers reform history teaching to make it more effective and engaging.
However, critics have disagreed vigorously about the goals and features of
an improved pedagogy. The language of reform reflects these disagreements,
often urging history teachers to choose either student-centered or teacher-



180 HOW STUDENTS LEARN: HISTORY IN THE CLASSROOM

centered pedagogies, an emphasis on facts or concepts, hands-on learning
or lecture, textbooks or primary sources, depth or breadth, inquiry or direct
instruction.

History teachers know that the choices are neither so dichotomous nor
so simple. Framing the instructional situation as a set of either-or choices,
such as abandoning textbooks in favor of primary sources or substituting
student inquiry projects for teachers’ lectures, ignores the perennial chal-
lenges that history students and, consequently, history teachers face in try-
ing to learn history and develop historical understanding. History is a vast
and constantly expanding storehouse of information about people and events
in the past. For students, learning history leads to encounters with thou-
sands of unfamiliar and distant names, dates, people, places, events, and
stories. Working with such content is a complex enterprise not easily re-
duced to choices between learning facts and mastering historical thinking
processes. Indeed, attention to one is necessary to foster the other. As How
People Learn suggests, storing information in memory in a way that allows it
to be retrieved effectively depends on the thoughtful organization of con-
tent, while core historical concepts “such as stability and change” require
familiarity with the sequence of events to give them meaning. Moreover,
learning history entails teaching students to think quite differently than their
“natural” inclinations. As Wineburg3  suggests, historical thinking may often
be an “unnatural” act, requiring us to think outside familiar and comfortable
assumptions and world views. Such work, then, requires both substantial
knowledge and skill on the part of the teacher to help students learn histori-
cal content while expanding their capacities to use evidence, assess inter-
pretations, and analyze change over time.

This chapter addresses the challenges high school history teachers con-
front every day when, facing large classes, predefined course goals, and the
required use of textbooks, they try to engage students in the intellectual
work of learning and “doing” history. Given the demands on history teach-
ers and the intellectual challenges students face while learning history, how
might high school history teachers use the ideas found in How People Learn
to construct history-specific instructional environments that support students
as they work toward deeper historical understanding? As a veteran high
school history teacher with over 25 years of experience, I begin by showing
how I cast traditional history topics and curricular objectives as historical
problems for my students to study. Reformers have long argued that histori-
cal inquiry ought to be part of history teaching, but often teachers see it as
something either on the margins of instruction or as a replacement for tradi-
tional teaching. This chapter takes a different approach by building upon
traditional curricular mandates and pedagogy to place inquiry at the heart of
instruction. Using a case study developed around my students’ studies of
Columbus, exploration, and the concept of the “flat earth,” I focus on ways
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teachers can restructure familiar curricular objectives into historiographic
problems that engage students in historical thinking. Formulating such his-
torical problems is a critical first step in history teaching.

But it is not sufficient simply to add problem formulation to the extant
history curriculum and pedagogy. This chapter goes beyond problem for-
mulation to suggest ways teachers might design history-specific “tools” to
help students do history throughout the curriculum. These modest cognitive
tools—“mindtools” as David Jonassen4 calls them—provide useful ways to
help students grapple with sophisticated historical content while performing
complex historical thinking and acquiring substantive knowledge. Again
drawing on my experiences with my students, this chapter makes a case for
transforming lectures and textbooks from mere accounts of events into sup-
ports that help students grapple with historical problems as they learn his-
torical content and construct historical meaning.

WHERE TO BEGIN?
TRANSFORMING TOPICS AND OBJECTIVES INTO
HISTORICAL PROBLEMS

History begins with—and often ends with—questions, problems, puzzles,
curiosities, and mysteries. Historians frame and build their historical research
around problems emerging from a complex mix of personal and profes-
sional interests, unexamined and underexamined questions, gaps in estab-
lished literature and knowledge, and recurring puzzles and issues. Like de-
tectives working intently on solving the mystery at hand, historians face
questions and puzzles that direct their scholarship, giving it meaning and
providing coherence.5  Seeking the answers to perplexing questions does
more than simply make history an engaging activity for historians; working
with problems also helps historians select, organize, and structure their his-
torical facts. It is no surprise, therefore, that most attempts to reform history
education urge teachers to begin with “big” questions. If historians are driven
to learn content by their questions, so, too, might students find history en-
gaging, relevant, and meaningful if they understood the fundamental puzzles
involved. Students, like historians, can use historical problems to organize
data and direct their inquiries and studies. Therefore, creating and using
good questions is as crucial for the teacher as it is for the researcher.

However, much as high school history teachers might wish to frame
their instruction around the historical problems arising from compelling in-
terests, gaps, puzzles, or mysteries, they must deal with a different set of
constraints from those faced by historians. History teachers are charged with
teaching their students a history that others have already written; thus they
typically begin with course outcomes in hand, determined by curricular
mandates (i.e., district or state) or the imperatives of external testing (i.e.,
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state exams, Advanced Placement or International Baccalaureate tests). Us-
ing the normative discourse of curriculum and standards documents, history
is cast into discrete behavioral objectives and measurable student outcomes,
readily used by the bureaucracies of schooling, such as testing and text-
books. Although the authors of those outcomes often started with compel-
ling questions, central ideas, and enduring problems, the bigger issues gradu-
ally fall away as the curricula are written, reshaped, vetted, voted upon, and
adopted. History, then, arrives at the classroom door as lists of things stu-
dents must learn and, thus, teachers must teach—missing the problems and
questions that make the content coherent, significant, and even fascinating.

Of course, beginning with measurable outcomes helps teachers estab-
lish targets for teaching and learning. However, curricular objectives rarely
connect outcomes to their intellectual roots, that is, to the historical prob-
lems and questions that generated such understanding in the first place.
Whatever their value for conducting assessments, lists of curricular objec-
tives do not (nor are they intended to) provide the disciplinary connections,
patterns, or relationships that enable teachers and students to construct co-
herent pictures of the history they study. Lists of instructional outcomes
rarely frame history as an unfinished mystery that invites students to join the
investigation or points teachers toward historiographic questions that might
begin and sustain instruction. Nor do curricular lists help teachers anticipate
students’ preinstructional understandings, develop a reasonable and educa-
tionally sound trajectory of lessons, or build connections across content ob-
jectives. Yet the knowledge base summarized in How People Learn suggests
that these are critical to effective teaching and learning. Given the form of
most standards documents, history teachers must offer the intellectual and
historical context necessary to provide meaning and coherence across dis-
crete objectives.

One way teachers can build instructional cohesion, as suggested in How
People Learn, is to organize the curriculum around history’s key concepts,
big ideas, and central questions.6  Teachers can provide instructional sub-
stance by grounding the abstractions found in standards and curriculum
documents in meaningful historical problems. But how do we move from
lists of loosely connected objectives to central historiographic questions?
How do we transform inert historical topics into historical problems?

In a sense, history teachers in the United States must play a form of
instructional Jeopardy by inventing the big questions to fit the curricular
answers. Like historians working backward from given events to the ques-
tions that precipitated them,7 history teachers work backward from given
objectives to the big historical questions. Unlike historians, however, who
work only along historical lines of thinking, teachers must be bifocal by
pursuing both historical and instructional lines of thinking. History teachers
must go beyond merely doing history or thinking historically themselves;
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they must be able to help others learn history and learn to think historically.
Therefore, history teachers have to employ an instructional as well as his-
torical logic when designing history problems, moving beyond historiographic
issues to consider their students and the context within which their students
learn history.

What does this mean in practice? First, teachers should try to design
historiographic problems that provide links across objectives to connect the
multiple scales of instructional time that teachers and students share: activi-
ties, lessons, units, and courses. Ideally, each scale is clearly nested within
and connected to others, so students can see how activities become lessons
forming coherent units that combine for unified courses. Unfortunately, stu-
dents rarely experience such coherence in their history courses, as reflected
in their belief that history comprises lists of facts, packaged in chronological
containers—such as textbook chapters—that have little discernable connec-
tion to each other. Unifying problems, if well designed and historically inter-
esting, can provide a larger frame to help students develop meaningful con-
nections across activities, lessons, units, and courses.

Second, in creating instructional problems, teachers also must pay atten-
tion to the multiple facets of historical knowledge—history’s facts, concepts,
and disciplinary patterns of thinking. Aiming for instructional coherence
does not mean that teachers will sacrifice the substance and rigor of the
discipline in crafting problems to study. Good problems look to both the
contours and details of historical stories, asking, for example, “How has
democracy in the United States changed over time? What explains differ-
ences in mobility or technology over time?” Working with such problems
requires students to grapple with important historical details while extend-
ing their understanding of and skill in using key historical concepts, such as
significance, cause and effect, change and continuity, evidence, and histori-
cal accounts.

Further, in creating instructional problems, teachers must carefully con-
sider the hidden challenges their students face when studying history and
employing historical thinking. For example, extraordinary knowledge and
skill are required to “put oneself in another’s shoes,” for the world views of
previous generations of people were profoundly different from our own.
Ninth graders can “imagine” what it felt like to be a European explorer or
Native American, but their natural inclination will be to presume more simi-
larity than difference across time. Students find it difficult to imagine a world
not yet shaped by science or the Industrial Revolution, a world in which
there were no social services and running water, a world in which U.S.
citizens did not take democracy for granted. Students’ historical present—
recognized or not—shapes their understanding of the past—another dimen-
sion for teachers to consider in designing historical problems for students to
study.8
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Thus, in constructing problems or questions, high school history teach-
ers must work on multiple instructional and historiographic levels, crafting
historical problems that are transportable across scales of instructional time—
activities, lessons, units, and courses—while capturing the factual, concep-
tual, and cognitive processes central to generating historical understanding
and challenging students’ assumptions. In framing these problems, history
teachers must ask, “What historical questions will connect the course activi-
ties and provoke my students to learn content as they extend their capacity
for historical thinking?” The following case study embodies this question by
first describing the complex historical problems I used to organize my high
school course and then creating a related problem for a unit within that
course.

“Problematizing” Historical Accounts to Raise Year-Long
Historical Questions

Creating central questions or problems challenges teachers to work at
the intersection of two separate junctures—what is historically significant
and what is instructive for and interesting to students. In my high school
history courses, I often met this challenge by “problematizing” historical
accounts—history’s stories, interpretations, narratives, and representations.
Focusing on historical accounts gave me material to create a robust set of
problems that stimulated, organized, and guided instruction over an entire
course.

What do I mean by problematizing historical accounts? At the unit level—
instruction ranging from about a week to a month—it means raising ques-
tions about particular historical stories, narratives, or interpretations. At the
level of the whole course, however, it means raising questions that are fun-
damental to historical understanding:

What is the difference between historical accounts and the
“past”? How do events that occurred in the past and the ac-
counts that people create about the past differ? If the past is
fleeting, happening only once and then disappearing, how is
it possible for people living in the present to create accounts
of the past? How do historians move from evidence of the
past to construct historical explanations and interpretations?
How do historians use evidence, determine significance, struc-
ture turning points, and explain continuity and change within
their accounts? Are some historical accounts “better” than oth-
ers? Why? By what standards do historians assess historical
accounts? Why do accounts of the same event differ and change
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over time? Does it make a difference which version of the
past we accept?

Such questions touch upon every facet of the discipline of history, con-
stituting the foundational problems historians confront when doing history.

Though it might appear obvious, focusing on historical accounts would
already represent a major break from traditional history instruction. The
accounts that historians write and adults read—such as the currently popular
biography of John Adams or the groundbreaking Cheese and the Worms9—
are typically too rich and deep, too complex and time-consuming, to find
their way into textbooks. Students do not read about John Adams’ life, his
relationship with his wife, his travels to Europe, his passions and enthusi-
asms, but rather read that he was President, that he held certain positions,
and that he died on the same day as Thomas Jefferson. Only these discrete
bits of information, the traces of historical accounts, make their way into
textbooks or into curricular objectives.

Raising questions about accounts helps students see the water in which
they are swimming. Historical accounts—or rather, the vestigial remains of
historical accounts—are ubiquitous in high school history courses. Textbooks,
media, handouts, lectures, classroom materials, technology, and teachers
surround history students with fragments of historical narratives and inter-
pretations, yet rarely do students see the nature and structure of these inter-
pretations. Much of high school history finds students exploring vast
evidenceless and authorless expanses of curriculum that promote, as histo-
rian David Lowenthal10  asserts, a “credulous allegiance” to some version of
the past:

Historical faith is instilled in school. “Youngsters have been taught history
as they were taught math as a finite subject with definite right or wrong
answers,” frets a museum director. Most history texts are “written as if their
authors did not exist. . . .” High marks depend on giving the “correct” gloss
to regurgitated facts. Textbook certitude makes it hard for teachers to deal
with doubt and controversy; saying “I don’t know” violates the authoritative
norm and threatens classroom control.

Problematizing historical accounts, then, makes visible what is obscured,
hidden, or simply absent in many history classrooms. It helps move school
history beyond reproducing others’ conclusions to understanding how people
produced those conclusions, while considering the limitations and strengths
of various interpretations. By making historical accounts our essential his-
torical problem, we can help students develop familiarity with historical
writing; identify ways in which people have interpreted past events; recog-
nize, compare, and analyze different and competing interpretations of events;
examine reasons for shifts in interpretations over time; study the ways people
use evidence to reason historically; and consider interpretations in relation-
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ship to various historical periods. Indeed, all of the familiar features of his-
tory classrooms—textbooks, lectures, primary sources, maps, time lines, and
even worksheets—take on new meaning for students when viewed as his-
torical accounts.

This approach does not preclude using themes, such as changes in mi-
gration, ideas, or political culture, but rather forces teachers to anchor their
themes in the issues of historical representation and interpretation. Nor does
a focus on interpretation favor process at the expense of facts. In looking
carefully at historical accounts, we must teach historical facts; more impor-
tant however, we must also raise questions about why we should (or whether
we should) consider particular sets of facts important. The study of interpre-
tations demands that students look carefully at the ways people use facts to
form and support historical accounts. Indeed, factual understanding becomes
even more significant as students grapple with how people use facts in
representing the past.

Moreover, a focus on multiple, shifting accounts does not mean students
will hold all accounts to be equally compelling or plausible; rather, like
historians, students must develop tools to evaluate and access competing
stories of the past, considering evidence and argument while learning to
judge what constitutes sound historical reasoning. In systematically ques-
tioning historical interpretations over the course of a school year, we can
help students understand that accounts differ, and that those differences lie
in the questions authors ask, the criteria they use to select evidence, and the
spatial and temporal backdrop people use to tell their stories.

Therefore, I placed the fundamental questions about historical under-
standing cited earlier at the heart of our study for the year.

In creating historical stories or interpretations, what questions were the
historians trying to answer? How did the historians, typically not present at
the events they were studying, use evidence from the past to answer their
questions and construct explanations or interpretations? Within their ac-
counts, how did the historians determine significance, structure turning
points, and explain continuity/change over time? Why do accounts of the
same events differ, shift in interpretation, or come into and out of fashion?
Are some historical accounts “better” than others? Why? By what standards
are we assessing historical accounts? Does it make a difference which ver-
sion of the past we accept?

Teachers will need to explicitly introduce and help students frame cen-
tral problems and concepts at the outset of a course and use them regularly,
even before the students fully understand them. That is what I did, using the
distinctions between “the past” and “history” to introduce students to the
problems involved in creating and using historical accounts. On the surface,
the difference between the past and history appears to be an easy one for
students to perceive and understand. But high school teachers know how
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long it takes for students to fully understand and employ such distinctions in
their thinking.

There are many ways to introduce these ideas, but a particularly power-
ful one is to have students write a short history of an event they all shared
and then compare their respective histories. For example, an activity I often
used was to have students write a history of the first day of school that they
would read aloud on the second day. The great variance in students’ choice
of facts, details, stories, and perspectives revealed differences between the
event under study (i.e., the first day of school) and the accounts of that
event. This simple activity helped reveal the distinctions between events and
historical accounts because students experienced the differences when writ-
ing about and comparing their shared pasts.

The most significant instructional goal and feature of the activity in-
volved our naming these distinctions by creating two new and key terms—
“H(ev)” and “H(ac)”—standing for “history-as-event” and “history-as-account.”
Why make up such new historical terms? Students typically enter history
class with established conceptions and assumptions about history. They use
the word “history” in two very different ways: (1) history as a past occur-
rence (“Well, that happened in history.”) or (2) history as an account of a
past occurrence (“I wrote that in my history.”) Their everyday and common-
sense uses of the word “history” blur the distinction between the past and
accounts of the past and reinforce typical conceptions that history is but a
mirror of the past. A crucial instructional move, therefore, involves creating
a language to help students break out of their ordinary, customary use of
“history” to make fundamental disciplinary distinctions.

Once defined, the phrases “history-as-event” and “history-as-account”
or the invented terms H(ev) and H(ac) were used almost daily by students to
name and frame materials commonly encountered, including textbooks, films,
and class lectures. This simple linguistic device helped them situate accounts,
regardless of how authoritative, in relationship to the events described by
those accounts. This, in turn, heightened students’ sensitivity to and aware-
ness of when we were discussing an interpretation and when we were
discussing an event. In exploring the distinction between history-as-event
and history-as-account, students generated questions they used to consider
the relationship between events and the accounts that describe them. For
example, one class produced these questions:

How do accounts relate to the event they describe? Do the
accounts capture the full event? Is it possible for accounts to
fully capture events? How and why do accounts of the same
event differ? Do they use different facts? Different sources?
Different pictures? Different language? Do the accounts iden-
tify different turning points or significant events in the game?
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Are the accounts connected to each together? Are there other
possible accounts of the event? Do accounts serve different
purposes? What explains the fact that people studying the same
event create differing accounts? Can one account be better
than another? How can we assess competing truth claims? Does
it matter which version of an event we accept as true? What
makes one account more compelling than another? How does
an account use evidence to make its claims?

These questions, initially discussed in relationship to students’ history of the
first day of class, formed a valuable backdrop for each successive unit. Initial
distinctions, introduced and then used regularly, helped students demystify
historical accounts by constantly reminding them that historical texts are
products of human thought involving investigation, selection, evaluation,
and interpretation.

Establishing these initial distinctions provided students with the begin-
nings of a new conceptual map for the discipline of history, a map we used
regularly to locate their position in historical territory. “So, were we just
now working with events or accounts of those events? Who constructed
the account? What evidence did they use in building the narrative or
interpretation?”

No one should think that merely pointing out conceptual distinctions
through a classroom activity equips students to make consistent, regular,
and independent use of these distinctions. Established habits of thinking
that history and the past are the same do not disappear overnight. Merely
generating questions about historical accounts did not mean that my stu-
dents developed the knowledge and skill needed to answer those questions,
or even to raise those questions on their own. In making conceptual distinc-
tions between the past and accounts of the past, it did not follow automati-
cally that students developed the intellectual skills to analyze, evaluate, or
construct historical accounts. Indeed, students did not even fully grasp the
distinctions represented in the new linguistic conventions they were using,
such as history-as-event/H(ev) and history-as-account/H(ac). Still, while not
lulled into thinking that introducing concepts meant students had mastered
those concepts, I expected students to use these terms regularly. In subse-
quent activities, the terms served as intellectual “mindtools” to guide student
thinking, helping and, at times, forcing students to analyze their everyday
uses of the word “history.” Thus in building on students’ nascent historical
thinking, I tried to push them to develop more refined and nuanced histori-
cal knowledge and skill while framing a historical problem large enough to
inform our entire course.
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Accounting for the “Flat Earth”:
Building a Unit-Level Problem

How might we create a problem for a unit of study that would engage
students, assist in posing the larger disciplinary questions about accounts
noted above, and meet curricular objectives such as those that characterize
the traditional topic of European exploration of the Americas? Early in the
school year, I asked a class of ninth-grade history students, “What do you
know about Columbus sailing the ocean blue in 1492? And what do you
know about the people of Europe on the eve of Columbus’ voyages? What
were they like? What did they believe and think?”

Ben Well, people of Europe didn’t know anything
about the United States or Canada, because
people had not been there yet. They wanted to
get to China to trade, but most people were
scared to sail across the Atlantic.

Teacher Why? What were their fears?

Ben The world was flat and you could fall off it . . .

Amanda People would not give him money for his ships
because they figured he would fail. But
Columbus proved them wrong. . . .

Ellen Not really. Columbus never really went all the
way around the earth.

Teacher So?

Ellen Well, people could still believe the earth was
flat, just that there was another land before
you got to the end of the earth.

Teacher Oh, then, people would have to really wait
until someone sailed all the way around the
world before they changed their ideas?

Ellen Yeah.

Teacher Well, for how long did this idea exist?

Bill All the way back to earliest times. Everyone
always thought the world was flat.

Ellen Except some scientists, right?

With some gentle questioning on my part, the students collectively told
the standard and widely accepted story of Columbus, an Italian sailor who
received funds from the king and queen of Spain to go to the east by sailing
west. Europeans thought this was “crazy” because people had thought—
forever—that the world was flat. Columbus, motivated by his search for
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gold, did land in the New World, but thought he had arrived in China and
the Indies, which is why he named the people there “Indians” before con-
quering them.

For about 10 to 15 minutes, I probed students’ ideas about Columbus
and fifteenth-century Europe, capturing key points of agreement and dis-
agreement on the chalkboard. I then encouraged students to think about the
source of their understanding, expanding our discussion by asking, “How
do you know that the flat-earth story is true? Where did you learn about it?
What evidence do you have?” After a few minutes of comments ranging
from “everyone knows” to “our elementary teacher told us,” it was clear that
students could not point to a specific account that supported their under-
standing of the event.

Because historical accounts were the focus for both the course and the
unit, I gave the students several excerpts from the writing of nineteenth-
century historians, excerpts I selected to substantiate the common view that
Europeans at the time of Columbus typically believed the earth was flat (see
Box 4-1). I used these nineteenth-century historical accounts simply to sup-
port students’ preinstructional thinking about the flat earth, intending to
return to analyze the accounts later in the unit.11  I asked the students to read
the accounts and to look for places where the accounts supported, extended,
or contested their thinking about Columbus and Europeans.

In general, these accounts typify the story about Europe and Columbus
that emerged in historical writing in the nineteenth century, a story that, as
the students’ discussion revealed, continues to hold sway with most students
(and adults). The excerpts tell of Columbus’ attempt to sail west to China
and the challenges posed by other Europeans and their beliefs about the flat
world. They reveal how the irrational beliefs of European sailors, clergy, and
nobility hindered Columbus, who knew, heroically, that the world was round.
They show how, in trying to achieve his dream, Columbus encountered
European sailors who were afraid he and his crew would fall off the edge of
the earth, clergy who were horrified by his heretical neglect of the Church
and the Scripture, and elites who were shocked by Columbus’ disregard for
established geographic knowledge. According to these accounts, Columbus
was different from other Europeans of his age: daring, courageous, and
blessed with the humanist’s faith that people were capable of great things if
they learned enough and tried hard enough.

By design, little in these accounts surprised the students, confirming
much of what they knew already about Columbus and the era in which he
lived.

Carlos He [Columbus] proved everyone wrong
because he guessed the world was round.

Ellen I think I knew that others wouldn’t fund him
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because they thought the world was flat and
he would fall off the edge. How could that be a
good investment?

Jim Well, he didn’t know much geography because
he thought he was going to India, that’s why
he called people Indians, right?

The only hint of surprise for students was that no account mentioned the
“discovery” of a people and a new land. Mark brought up this point, telling
us, “Columbus thought he discovered America, but there were natives living
there.” Concerning the story of the flat earth, students were confident that
the flat-earth belief was a real obstacle to Columbus and other explorers.

However, most contemporary historians no longer regard this to be the
case. This story of the pre-Columbian belief in the flat earth therefore pro-
vides a wonderful opportunity to explore both the details of life in fifteenth-
century Europe and larger issues concerning the relationship between his-
torical accounts and the events they attempt to represent. Columbus, most
historians today argue, was hardly alone in believing the world was round;
indeed, according to recent historical accounts, most educated or even par-
tially educated Europeans believed the world was round.12  The elite, for
example, did not resist Columbus because they thought he would fall off the
earth’s edge; rather, they thought he had underestimated the size of the
earth and would never be able to sail so far in open water (a quite reason-
able concern had there not been an unanticipated land mass upon which
Columbus could stumble).

Yet my students believed with unquestioning certitude that people prior
to Columbus thought the earth was flat. Schooled by their culture and enter-
ing the history classroom filled with specific stories about historical events
we were studying, they were hardly historical blank slates. The flat-earth
story is a part of the national, collective memory. Adults regularly use it as
metaphor to describe the ignorance or superstitions of the masses. “Belief in
the flat earth” is shorthand for any idea that blinds people to seeking and
seeing the truth. My high school students understood and could use this flat-
earth metaphor. And like most people, they did not see that this story of the
fifteenth-century belief in a flat earth was simply an account of the past and
not the past itself. For them, the flat-earth belief was an undisputed feature
of the event. Whatever distinctions students had made in our earlier lessons
between events and accounts, they had not yet realized that those distinc-
tions were relevant to their own beliefs about the flat-earth story. When
faced with a story of the past that they themselves held, students returned to
their presumptions that the past is a given, an unwavering set of facts that
historians unearth, dust off, and then display.
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1. “Columbus was one of the comparatively few people who at that
time believed the earth to be round. The general belief was that it was
flat, and that if one should sail too far west on the ocean, he would come
to the edge of the world, and fall off.”

SOURCE: Eggleston (1904, p. 12).

2. “‘But, if the world is round,’ said Columbus, ‘it is not hell that lies
beyond the stormy sea. Over there must lie the eastern strand of Asia,
the Cathay of Marco Polo, the land of the Kubla Khan, and Cipango, the
great island beyond it.’ ‘Nonsense!’ said the neighbors; ‘the world isn’t
round—can’t you see it is flat? And Cosmas Indicopleustes [a famous
geographer] who lived hundreds of years before you were born, says it is
flat; and he got it from the Bible. . . ’”

SOURCE: Russell (1997, pp. 5-6).

3. “Columbus met with members of the Clergy and Spanish elite at
Salamanca, who told him: ‘You think the earth is round, and inhabited on
the other side? Are you not aware that the holy fathers of the church
have condemned this belief? . . . Will you contradict the fathers? The Holy
Scriptures, too, tell us expressly that the heavens are spread out like a
tent, and how can that be true if the earth is not flat like the ground the
tent stands on? This theory of yours looks heretical.’”

SOURCE: Russell (1997, pp. 5-6).

4. “Many a bold navigator, who was quite ready to brave pirates and
tempests, trembled at the thought of tumbling with his ship into one of
the openings into hell which a widespread belief placed in the Atlantic at
some unknown distance from Europe. This terror among sailors was one
of the main obstacles in the great voyage of Columbus.”

SOURCE: White (1896, p. 97).

BOX 4-1 Accounts of Columbian Voyages

Two critical features of teaching history are displayed here. The first
involves probing students’ thinking about the historical problem they are
studying and making their thinking visible for all to see. History education
entails helping students learn to think historically. Students’ thinking resides
at the instructional center; therefore, teachers must regularly take stock of it
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5. “At Council of Salamanca, one of the ‘learned’ men asked Co-
lumbus: ‘Is there any one so foolish . . . as to believe that there are
antipodes with their feet opposite to ours: people who walk with their
heels upward, and their heads hanging down? That there is a part of the
world in which all things are topsy-turvy; where the trees grow with
their braches downward, and where it rains, hails, and snows upward?
The idea of the roundness of the earth . . . was the cause of the invent-
ing of this fable. . . .’”

SOURCE: Irving (1830, p. 63).

6. “There appeared at this time a remarkable man—Christopher Co-
lumbus. . . . He began to astonish his country men with strange notions
about the world. He boldly asserted that it was round, instead of flat; that
it went around the sun instead of the sun going around it; and moreover,
that day and night were caused by its revolution on its axis. These doc-
trines the priests denounced as contrary to those of the church. When he
ventured to assert that by sailing west, he could reach the East Indies,
they questioned not only the soundness of his theory, but that of his
intellect.”

SOURCE: Patton and Lord (1903, p. 12).

7. “Now, the sailors terror-stricken, became mutinous, and clamored
to return. They thought they had sinned in venturing so far from land. . . .
Columbus alone was calm and hopeful; in the midst of these difficulties,
he preserved the courage and noble self-control. . . . His confidence in the
success of his enterprise, was not the ideal dream of a mere enthusiast;
it was founded in reason, it was based on science. His courage was the
courage of one, who, in the earnest pursuit of truth, loses sight of every
personal consideration.”

SOURCE: Patton and Lord (1903, pp. 13-14).

and make it visible. The above class discussion is an example of a formative
assessment whereby I tried to probe the thinking of the whole class. I asked
students to weigh in on the problem, had them spend time documenting
their thinking by writing about it in their journals, and then collected their
thinking on the board.
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Gathering student thinking is but a first step. History teachers do not
take stock of student thinking merely to stimulate interest—though it cer-
tainly can have that important effect—but also to hold it up for critical ex-
amination. This observation leads to the second key feature of history teach-
ing demonstrated here: asking students to explain how they know what they
know about the historical event. Merely asking students to retell a historical
story or narrate an event is insufficient for high school history students;
rather, teachers must press students to document their understanding, and to
explain the evidence they are using to draw conclusions or to accept one
historical account over another. Like a historian querying a text, I prodded
my students by asking for evidence and support. And like a historian who
uses sources to extend understanding, I asked the students how each new
piece of evidence or account supported, extended, or contested their his-
torical thinking. Here again, language used regularly—“support,” “extend,”
or “contest”—helped novice historians analyze critically the relationship be-
tween new sources and their own understanding.

In this case, my students could not point to the specific source of their
knowledge about the flat earth, and so I provided them with historical
accounts to support their ideas. Then to challenge their thinking and to
draw the distinction between the story they knew and the event under
study, I provided students with two sources of evidence that contested their
assumptions and ideas: the first, a picture of a classical statue of Atlas hold-
ing up a celestial globe, created between 150 and 73 B.C.E.; and the sec-
ond, an explanation by Carl Sagan of how the classical scholar Eratosthenes
determined the circumference of the world in the third century B.C.E. (see
Box 4-2). In groups of three, students discussed how these sources sup-
ported, extended, and/or contested their thinking about Columbus and the
flat-earth idea. We then began our class discussion by asking, “If, as you
and other historians have explained, people prior to 1492 generally be-
lieved that the earth was flat, then how do we explain the classical story of
Atlas holding up a round earth or of Eratosthenes figuring out the earth’s
circumference over 2,000 years ago?”

The pictures of Atlas resonated with stories the students knew or pic-
tures they had seen before. The story of Eratosthenes—though not explicitly
remembered from earlier courses—connected with students’ ideas that some
ancient “scientists” were capable of unusually progressive thinking, such as
building the pyramids or planning great inventions. In other words, these
stories were familiar to the students, yet they made no connection between
these stories and that of the flat earth. They had compartmentalized their
understandings and did not see that they possessed ideas relevant to the
question at hand. Use of the pictures of Atlas or stories of pre-Columbian
geographers called upon features of students’ background knowledge to
provoke them to reconsider the certitude with which they held the flat-earth
story:
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Andrew Those other stories [accounts we read before]
made it sound as if Columbus was the scientist
who discovered the earth was round. But I
think other scientists had figured out the world
was round, like Galileo. I mean, didn’t he?

Teacher I think, I mean, wasn’t Galileo born in the
sixteenth century, after the Columbian voy-
ages?

Andrew Ok, but what I mean is that I don’t really think
that Columbus was the first to prove the world
was round. I mean, he didn’t exactly prove it.
These others had thought it was round and he
just proved you wouldn’t fall off the edge of
the earth. They thought it. He proved it.

Sarena Now, I sort of remember that many educated
people believed the earth was round. Seems
odd, that everyone believed the earth was flat
but Columbus, doesn’t it?

As I orchestrated the class discussion, I intentionally prodded students
to consider the story of the flat earth as a specific historical account that may
or may not be supported by evidence and, like all historical accounts, one
that emerged at a particular time and place:

So, did fifteenth-century people believe that the earth was flat?
What evidence do you have? What evidence do other accounts
provide? Was it possible that people at one time, say during
the Classical era, had such knowledge of the world, only to
forget it later? Why might the flat-earth story emerge? What
purpose would it serve? Does it make a difference which ver-
sion of the story people believe? Could it be that the view
adopted throughout our culture is unsupported by evidence?
When did it develop and become popular? Why?

The conversation in the class turned to the discrepant information stu-
dents confronted, the discrepancies that resided at the juncture of their as-
sumed ideas about the past and the presented evidence. The discussion
about this specific case also began to call into question what the students
generally believed about people in the past. “If people at the time of Colum-
bus believed in a flat earth,” I asked, “what might explain how people at
least 1,500 years before Columbus crafted globes or created (and resolved)
problems about the earth’s circumference? Is it possible that at one time
people had knowledge of a round earth that was ‘lost’?”
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The Atlas Farnese

In 1575, this marble fig-
ure of Atlas holding a celestial
globe was found in Rome. It
is called the Atlas Farnese, as
Farnese was the name of the
collection it entered. It was
created by sculptor Crates.
The exact date of the sculp-
ture is not known. However,
scholars assume that it was
made sometime after 150
A.D. because of the represen-
tation of the vernal equinox on
the globe, which is similar to
that in Ptolemy’s Almagest. To

give you an idea of the size, the sphere has a diameter of about 251/2

inches.

THE STORY OF ERATOSTHENES AND THE EARTH’S
CIRCUMFERENCE

‘The discovery that the Earth is a little world was made, as so
many important human discoveries were, in the ancient Near East,
in a time some humans call the third century BC, in the greatest
metropolis of the age, the Egyptian city of Alexandria. Here there
lived a man named Eratosthenes.

. . . He was an astronomer, historian, geographer, philosopher,
poet, theater critic and mathematician. . . . He was also the director
of the great library of Alexandria, where one day he read in a papy-
rus book that in the southern frontier outpost of Syene . . . at noon
on June 21 vertical sticks cast no shadows. On the summer solstice,
the longest day of the year, the shadows of temple columns grew
shorter.  At noon, they were gone. The sun was directly overhead.

It was an observation that someone else might easily have ig-
nored. Sticks, shadows, reflections in wells, the position of the Sun—

BOX 4-2 Ancient Views of Earth Flat or Round?
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of what possible importance could such simple everyday matters
be? But Eratosthenes was a scientist, and his musings on these
commonplaces changed the world; in a way, they made the world.
Eratosthenes had the presence of mind to do an experiment, actu-
ally to observe whether in Alexandria vertical sticks cast shadows
near noon on June 21.  And, he discovered, sticks do.

Eratosthenes asked himself how, at the same moment, a stick
in Syene could cast no shadow and a stick in Alexandria, far to the
north, could cast a pronounced shadow. Consider a map of an-
cient Egypt with two vertical sticks of equal length, one stuck in
Alexandria, the other in Syene. Suppose that, at a certain moment,
each stick casts no shadow at all.  This is perfectly easy to under-
stand—provided the Earth is flat.  The Sun would then be directly
overhead. If the two sticks cast shadows of equal length, that also
would make sense of a flat Earth: the Sun’s rays would then be
inclined at the same angle to the two sticks. But how could it be
that at the same instant there was no shadow at Syene and a sub-
stantial shadow at Alexandria?

The only possible answer, he saw, was that the surface of the
Earth is curved.  Not only that:  the greater the curvature, the greater
the difference in the shadow lengths. The Sun is so far away that its
rays are parallel when they reach the Earth. Sticks placed at differ-
ent angles to the Sun’s rays cast shadows of different lengths. For
the observed difference in the shadow lengths, the distance between
Alexandria and Syene had to be about seven degrees along the
surface of the Earth; that is, if you imagine the sticks extending
down to the center of the Earth, they would there intersect at an
angle of seven degrees. Seven degrees is something like one-fiftieth
of three hundred and sixty degrees, the full circumference of the
Earth.  Eratosthenes knew that the distance between Alexandria
and Syene was approximately 800 kilometers, because he hired a
man to pace it out.  Eight hundred kilometers times 50 is 40,000
kilometers: so that must be the circumference of the Earth.

This is the right answer.  Eratosthenes’ only tools were sticks,
eyes, feet and brains, plus a taste for experiment. With them he
deduced the circumference of the Earth with an error of only a few
percent, a remarkable achievement for 2,200 years ago. He was
the first person to accurately measure the size of the planet.’

SOURCE: Sagan (1985, pp. 5-7).
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To help students frame this problem more sharply—as well as to begin
revealing the core historiographic debate—students read selections from the
work of two contemporary scholars, Daniel Boorstin and Stephen Jay Gould
(see Box 4-3). In one excerpt, Boorstin argues that the Middle Ages was a
“great interruption” in the intellectual progress begun in Classical times, de-
scribing this interruption as an era when people were “more concerned with
faith than facts.”13  On the other hand, Gould rejects the idea of a great
interruption in European geographic knowledge, pointing to a story of con-
tinuity rather than discontinuity of ideas.

I used these excerpts strategically, for I wanted to provoke an in-class
discussion and move the class toward framing an instructional/historical
problem that would guide our study of European discovery: “Did people in
1492 generally believe in the flat earth? If not, when did the story of the flat
earth arise? Who promoted that account? Why would people tell stories
about the flat earth if the stories were not supported by evidence? What
historical accounts explain European exploration of the Americas? How have
historians changed those accounts over time?”

In thus problematizing the Columbian account and framing these ques-
tions, I sharpened the larger historiographic questions we were using to
structure the entire course and the specific curricular objectives for the unit
under study. In investigating these questions and analyzing the shifting and
competing interpretations of exploration and explorers, high school history
students also worked toward mastering the key content objectives for this
unit of history. For example, while grappling with issues related to the na-
ture of historical interpretation and knowledge, students had to study the
context for and impact of European exploration from a number of perspec-
tives. Historical knowledge—facts, concepts, and processes—shaped almost
every feature of the unit, from the framing of the problem through the ques-
tions we employed during discussions. Students learned historical facts in
the context of these large historical questions, and once they understood the
questions, they saw they could not answer them without factual knowledge.
The old and false distinction between facts and interpretations or between
content and process collapses here. How can students learn about the ac-
counts of the past—the growth of the flat-earth story, for example—without
studying the knowledge and ideas of fourteenth- and fifteenth-century Euro-
peans, the features of the waning Middle Ages, the emerging renaissance,
tensions between the orthodoxy of the church and new scientific ideas, or
the new mercantile impulses that promulgated reasonable risks in the name
of profit? As students studied the development of the flat-earth story, an idea
of the late eighteenth/early nineteenth century, they also worked with facts
about early American national growth, conflicts with Britain and France, and
Protestant concerns about Irish immigration. In trying to understand how
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this account of the past developed and became popular, students used spe-
cific factual detail to make their cases.

Learning historical content, though, was not the only factor that shaped
the instruction. In helping students frame a historiographic problem, we
publicly took stock of students’ background knowledge and of their histori-
cal conceptions and misconceptions. Simply revealing students’ thinking does
not help them achieve higher levels of understanding. But by making visible
what students thought, I was able to use their ideas to design subsequent
instruction and thus encourage them to use historical evidence to question
or support their ideas. The activities discussed above asked students to jux-
tapose their understanding against historical evidence or established histori-
cal accounts. The pedagogical moves were specifically historical; that is, in
probing students’ knowledge about a historical event, we went beyond just
surveying what students knew or what they wanted to learn, a popular
technique that begins many lessons (e.g., “Know-Want to know-Learned”
charts). Rather, like historians, we used new evidence and other historical
accounts to support, extend, or contest students’ understanding. In estab-
lishing the unit problem, we created a place for students to consider the
relationship among their own historical interpretations of the events, those
of other historians, and historical evidence. Again, the three verbs I consis-
tently asked students to use—“support,” “extend,” and “contest”—helped
them situate historical interpretations and sources in relationship to their
understanding.

Unit-level historical and instructional problems, then, emerged at the
intersection of the essential course problems, the unit’s specific curricular
objectives, and students’ understanding. Having formed historical problems
and with sources now in hand, we might say that the students were doing
history. However, we are cautioned by How People Learn and by scholar-
ship on the challenges novices face in employing expert thinking to look
beyond the trappings of the activity and consider the supports students may
need to use the problems and resources effectively as they study history.

DESIGNING A “HISTORY-CONSIDERATE”
LEARNING ENVIRONMENT:  TOOLS FOR
HISTORICAL THINKING

A central feature of learning, as How People Learn points out, involves
students “engag[ing] in active processes as represented by the phrase ‘to
do.’” 14  The students in this case study were engaged in the active processes
of history as they raised historiographic problems about accounts in general
and the case of Columbus in particular, and in the subsequent use of histori-
cal sources to investigate those problems. In emphasizing the need to en-
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‘Christian Europe did not carry on the work of [ancient think-
ers such as] Ptolemy. Instead the leaders of orthodox Christendom
built a grand barrier against the progress of knowledge about the
earth. Christian geographers in the Middle Ages spent their ener-
gies embroidering a neat, theologically appealing picture of what
was already known, or what was supposed to be known. . . .

It is easier to recount what happened than to explain satisfacto-
rily how it happened or why.  After the death of Ptolemy, Christian-
ity conquered the Roman Empire and most of Europe. Then we
observe a Europe-wide phenomenon of scholarly amnesia, which
afflicted the continent from A.D. 300 to at least 1400. During those
centuries Christian faith and dogma suppressed the useful image
of the world that had been so slowly, so painfully, and so scrupu-
lously drawn by ancient geographers. . . .

We have no lack of evidence of what the medieval Christian
geographers thought.  More than six hundred mappae mundi, maps
of the world, survive from the Middle Ages. . . .

What was surprising was the Great Interruption.  All people have
wanted to believe themselves at the center. But after the accumu-
lated advances of classical geography, it required amnesiac effort
to ignore the growing mass of knowledge and retreat into a world
of faith and caricature. . . . The Great Interruption of geography we
are about to describe was a . . . remarkable act of retreat.’

Christian geography had become a cosmic enterprise, more in-
terested in everyplace than in anyplace, more concerned with faith
than with facts. Cosmos-makers confirmed Scripture with their
graphics, but these were no use to a sea captain delivering a cargo
of olive oil from Naples to Alexandria. . . .

SOURCE: Boorstin (1990, pp. 100, 102, 146).

BOX 4-3 Was There a Great Interruption in European Geographic
Knowledge?

gage students in the practices of the discipline, it is tempting to conclude
that simply doing something that resembles a disciplinary activity is by itself
educative and transformative. There is a danger, however, if teachers
uncritically accept the historian’s practices as their own and confuse doing
history with doing history teaching.

History teachers, curriculum designers, and assessment architects need
to be cautious when attempting to transplant activities from a community of
history experts to a body of student novices. Historical tasks embedded
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Dramatic to be sure, but entirely fictitious. There never was a period
of “flat earth darkness” among scholars (regardless of how many unedu-
cated people may have conceptualized our planet both then and now).
Greek knowledge of sphericity never faded, and all major medieval schol-
ars accepted the earth’s roundness as an established fact of cosmology.
Ferdinand and Isabella did refer Columbus’s plans to a royal commission
headed by Hernando de Talavera, Isabella’s confessor and, following de-
feat of the Moors, Archbishop of Granada. This commission, composed
of both clerical and lay advisers, did meet, at Salamanca among other
places. They did pose some sharp intellectual objections to Columbus,
but all assumed the earth’s roundness. As a major critique, they argued
that Columbus could not reach the Indies in his own allotted time, be-
cause the earth’s circumference was too great. . . .

Virtually all major medieval scholars affirmed the earth’s roundness.
. . . The twelfth-century translations into Latin of many Greek and Arabic
works greatly expanded general appreciation of natural sciences, particu-
larly astronomy, among scholars, and convictions about the earth’s sphe-
ricity both spread and strengthened. Roger Bacon (1220-1292) and Tho-
mas Aquinas (1225-1274) affirmed roundness via Aristotle and his Arabic
commentators, as did the greatest scientists of later medieval times, in-
cluding John Buriden (1300-1358) and Nicholas Oresme (1320-1382).

SOURCE: Gould (1995, p. 42).

within an expert community draw meaning from the group’s frames, scripts,
and schemas. Experts differ from novices, as How People Learn explains,
and this is an important point for history teachers to bear in mind. Students
learning history do not yet share historians’ assumptions. They think differ-
ently about text, sources, argument, significance, and the structure of histori-
cal knowledge.15  The frames of meaning that sustained the disciplinary task
within the community of historians will rarely exist within the classroom.
Initially, students typically resist the transplanted activity, or the culture of
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the classroom assimilates the “authentic” activity, using it to sustain novices’
naive or scholastic views. Engaging students in some legitimate disciplinary
activity without restructuring the social interaction or challenging students’
presuppositions will yield only ritualistic understanding. The problem for
teachers is to design activities that will engage students in historical cogni-
tion without yielding to the assumption that disciplinary tasks mechanically
develop students’ higher functions.

As a classroom teacher, I was often caught in this paradox of trying to
have my students work actively with history at the same time that I was
trying to help them acquire the “unnatural” dispositions and habits of mind
necessary to engage in history’s intellectual work. Take, for example, the
reading of primary sources—an intellectual activity that now appears to be
synonymous with historical thinking in U.S. classrooms and on standardized
exams. Using primary sources as historians do involves more than just find-
ing information in sources; it requires that students pay attention to features
within and outside of the text, such as who wrote the source, when was it
created, in what circumstances and context, with what language, and for
what reasons. Working with these questions in mind is challenging for high
school students, a challenge not met merely by giving them the chance to
use primary sources in grappling with a historical question.16  Indeed, the
opening activities discussed above demonstrated this point to me clearly, as
only 2 of 55 asked for information about the authors in the authorless hand-
outs I provided to frame the flat-earth problem. Though the students and I
had established a good historiographic problem using competing sources,
the students still needed support in doing more sophisticated reading and
thinking.

The key word above is “support.” As a history teacher, I wanted my
students to engage in more complicated work than they could perform on
their own. Believing, as Bruner 17  argues, that teachers can teach any subject
to anybody at any age in some form that is honest, I found, even as a
veteran history teacher, that putting historical work into honest and appro-
priate form for my students was an ongoing challenge. This was particularly
true in classes where the learners developed history’s cognitive skills at
varying rates and to varying degrees—a characteristic of every class I ever
taught, regardless of how small or how homogeneous. History teachers regu-
larly face the dilemma of reducing the challenge of the historical tasks they
ask students to tackle or simply moving on, leaving behind or frustrating a
number of students. Instead of making such a choice, teachers can keep the
intellectual work challenging for all their students by paying careful atten-
tion to the design and use of history-specific cognitive tools to help students
work beyond their level of competence. The underlying idea is that with
history-specific social assistance, history students can exhibit many more
competencies than they could independently, and through history-specific
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social assistance, history’s higher-order analytic approaches emerge and are
subsequently internalized. Tharp and Gallimore18  remind us that “until inter-
nalization occurs, performance must be assisted.” By attending to students’
thinking and by embedding historians’ disciplinary thinking into classroom
artifacts and interactions, we can transform a class of novices into a commu-
nity with shared, disciplinary expertise. Participating in such a community
opens up opportunities for students to internalize the discipline’s higher
functions.

What do I mean by history-specific tools and social assistance? Here I
refer to visual prompts, linguistic devices, discourse, and conceptual strate-
gies that help students learn content, analyze sources, frame historical prob-
lems, corroborate evidence, determine significance, or build historical argu-
ments. In short, these cognitive tools help students engage in sophisticated
historical thinking. I demonstrated an example of a history-specific cogni-
tive tool earlier in this chapter in my discussion of opening activities that
helped students distinguish between history-as-event and history-as-account.
In framing these distinctions as they emerged from students’ experiences,
we transcended these experiences by creating linguistic devices—H(ev)
and H(ac)—that students used to explore the historical landscape. With
guidance, students’ experiences in the first few days of school produced a
set of tools in the form of terms that they subsequently used to analyze
historical events and sources. Later work on the flat-earth question revealed
that students did not fully understand and were not regularly applying these
distinctions on their own. In other words, they had not internalized these
differences. However, the linguistic supports and my repeated reminders
continued to help students use these distinctions in their studies. The spe-
cial terms helped sharpen students’ thinking in ways that the common use
of the word “history” did not. With continued use, students began to em-
ploy the differences between the past and stories about the past more ef-
fectively and without prompting. Eventually, our need to refer to the con-
structed terms, H(ev) and H(ac), declined. Typically by the end of the first
semester, though still regularly using the ideas behind the terms, we were
using the terms only occasionally.

Reading of primary sources was another area in which specially created
history-specific tools helped students engage in more sophisticated think-
ing. Here I established a group reading procedure to assist students in ana-
lyzing, contextualizing, sourcing, and corroborating historical material.19   To
create history-specific metacognitive tools, I tried to embed such thinking
within our classroom interactions around reading primary and secondary
sources. By modifying reciprocal teaching procedures20  to reflect the strate-
gies historians use when reading primary sources, I established reading pro-
cedures that enabled a group of students to read and question sources to-
gether in ways they did not on their own.21
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The key here was a discipline-specific division of labor whereby I as-
signed each student or pair of students to “become” a particular type of
historical question or questioner. For example, some students were assigned
to ask “What other sources support or contest this source?” and thus became
“corroborators”; others were assigned to ask about the creator of a source
and thus became “sourcers.” Within specific roles, students questioned class-
mates about the documents we were reading together, and so the discussion
unfolded. Some students posed questions reflected in general reading strat-
egies and asked classmates to identify confusing language, define difficult
words, or summarize key points. However, the remaining roles/questions—
e.g., corroborator, sourcer, contextualizer—were specific to the discipline of
history, encouraging students to pose questions expert historians might ask.
Using historians’ strategies—such as corroborating, contextualizing, and sourc-
ing—students asked their classmates questions about who created the source,
its intended audience, the story line, what else they knew that supported
what was in the source, and what else they knew that challenged what was
in the source.

Thus, having equipped each student with a particular set of questions
to ask classmates, we reread the accounts of Columbus and the flat earth
(Box 4-1):

Teacher Does anyone have any questions for their
classmates about these sources? Let’s begin
with maybe a question about vocabulary or
summaries, ok? Who wants to begin?

Chris I guess I will. How would you summarize these
stories?

Teacher Do you want someone to summarize all the
stories, all the excerpts? Or, maybe an aspect
of the stories?

Chris Ok, I guess just an aspect. What do you think
these say about Columbus? Ellen?

Ellen He is smart.

Chris Anything else?

Ellen Brave?

Aeysha Chris’ question has got me thinking about my
questions. What do all of these stories say
about the kind of person Columbus was? Do
they have [some] agreement . . . with each
other about him?

Teacher Let’s stop and think about this question and
use our journals to write a “2-minute” essay
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about what these tell us about the kind of
person Columbus was.

The journal writing gave students time to work out an answer informally
on paper before publicly talking about their ideas. After a few minutes of
writing time, the students had worked out more-detailed pictures of Colum-
bus as represented in the accounts. For example, Ellen wrote:

In these stories, Columbus appears to be smart. He is a real
individual and pretty brave. Everyone else was just follow-
ing the ideas of the day and he was a protester, a rebel
against everyone else. These glorify him.

After reading a few students’ journal entries aloud, I asked whether
anyone else had some questions to ask classmates about the sources:

Sarena I do. Does anyone notice the years that these
were written? About how old are these ac-
counts? Andrew?

Andrew They were written in 1889 and 1836. So some
of them are about 112 years old and others are
about 165 years old.

Teacher Why did you ask, Sarena?

Sarena I’m supposed to ask questions about when the
source was written and who wrote it. So, I’m
just doing my job.

Andrew Actually, I was wondering if something was
happening then that made Columbus and this
story popular. Did historians discover some-
thing new about Columbus in the 1800s?

Rita How do you know they were historians who
wrote these?

Andrew Because the title says “Historian’s Accounts.”

Rita Yeah, but Washington Irving wrote about the
headless horseman. Was he a historian? And
he wrote stories for kids. Were these taken
from books for young kids? Maybe that is why
they tell such stories about Columbus, like he
was some big hero?

As they asked questions, classmates returned to the documents, made jour-
nal entries, and discussed their answers. Thus, in this structured manner, the
class raised multiple questions that guided everyone’s reading and discus-
sion of text. And students raised a number of questions that could not be
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answered from the sources in front of them. They offered conjectures and
speculations that we would explore through later resources, including pri-
mary sources, secondary sources, textbooks, and lectures.

This reading activity was initially awkward and time-consuming with its
role assignments, complex questioning, journaling, and discussion. It dif-
fered from cooperative activities whereby a group divides a historical topic,
such as European exploration, and then researches a particular component
of the topic, such as Spanish explorers or English explorers or natives’ re-
sponses to exploration, before reporting to classmates what they have learned
about their piece of the content. In this example, the division of labor oc-
curred along the lines of thinking needed to read and analyze a historical
text. The facets of the complex historical thinking—not merely the topical
features—then defined and divided the students’ intellectual work. By using
these roles to read and then question each other, the students avoided their
habit of treating historical text as they would other text, merely as a place to
find “authoritative” information.

I used this structured reading and discussion activity because I did not
initially expect individual students to be capable of performing a complete,
complex historical analysis of a document or a document set. Paradoxically,
however, from the beginning students needed to do such analysis to work
on the historical and instructional tasks I assigned. Rather than lower disci-
plinary standards or allow novices merely to mimic experts, we used this
reading strategy to enable students—as a group—to participate in this com-
plex, disciplinary activity. Initially, the designed cognitive tools (e.g., group
reading procedure) and the teacher carried most of the intellectual load that
enabled students to participate in the activity.22

As How People Learn explains, history teachers need to design student-,
content-, and assessment-centered learning environments to support stu-
dents’ historical study. In a sense, teachers work to build a history-specific
culture that, through its patterns of interactions, instructional tasks, and arti-
facts, assists students in thinking historically (for more examples see Bain,
2000). In designing this environment, teachers try to make the key features
of expert historical thought accessible for students to use as needed—during
class discussion or while working in groups, at home, or on exams. “You’re
giving your students crutches,” some teachers have told me, “and you should
not let students use crutches.” However, I like the analogy because I know
few people who will use crutches unless they need them. Once able to get
around without them, people cast the crutches aside. So it has been with the
history-specific tools in my classroom. Once students have internalized the
distinctions between “past” and “history” or the multiple strategies designed
to help them read sources with more power, they find that our classroom
supports slow them down or get in their way. When that happens, students
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stop using them. On the other hand, the supports remain available when
students need assistance.

In such an environment, the lecture and textbook acquire new meaning.
Given our focus on historical accounts, students start to use and see lectures
and textbooks as examples of historical accounts. Students can apply the
same sets of questions to the textbook and to my lectures that they do to
other historical accounts and sources. For example, “How does this lecture
support, expand, or contest what I already understand? What else corrobo-
rates this account? What shaped it?”

Also, we can reconsider texts and lectures as possible suports—history-
specific cognitive tools—to help students think historically, and not just as
vehicles to transmit information. Teachers can design and use lectures and
textbooks strategically to help students frame or reframe historiographic prob-
lems; situate their work in larger contexts; see interpretations that might
support, extend, or contest their emerging views; work more efficiently with
contradictions within and among sources; and encounter explanations and
sources that, because of time, availability, or skill, students would not be
able to use. With help, students can learn to actively “read” lectures and
textbooks, and then use both critically and effectively in their historical study.

For example, consider again the problem my students confronted
once they began to allow the possibility that fifteenth-century Europeans
might not have thought the earth was flat or that people had not always
told that historical story. The students raised deep, rich, and complex his-
torical questions:

Have the stories about Columbus changed since 1492? If so, in
what ways did they change? What factors explain the shifting
views about Columbus? Why did the story change? Does it
matter which view or interpretation people hold about the
story?

The pride and excitement I derived from their questions was tempered by a
recognition of how limited were our time and resources. Realistically, where
would my students go to flesh out the contours of this historical problem
and find the details to give it meaning? Would their textbook give the evi-
dence needed to move forward? Had the primary sources I provided given
students the material necessary to paint the larger historical picture, resolve
their confusions, or answer their questions? The students needed help orga-
nizing their ideas, putting sources and evidence within a larger temporal
context, understanding discrepant sources, and expanding both the facts
and interpretations at hand. If my students were going to do more than ask
powerful questions, they needed some assistance. In the midst of their his-
torical inquiries appeared to be a perfect “time for telling.”23
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Therefore, I designed a lecture specifically to help students consider
temporal shifts in the way people have regarded the Columbian story, ques-
tions that emerged after students had encountered discrepant accounts of
the story. I saw this as a chance to revisit the unit’s central problem and
bring forward facts, concepts, ideas, and interpretations that might help stu-
dents further their inquiries and develop their explanations. I began the
lecture by asking students to write five dates in their journals—1592, 1692,
1792, 1892, and 1992—and then to predict how people living in the colonies
and later in the United States marked the 100th, 200th, 300th, 400th, and
500th anniversary of the Columbian voyages. After the students had written
their predictions in their journals and spent a few minutes talking about
what they expected and why, I provided them with historical information
about the changing and shifting nature of the Columbian story over the past
500 years.

For example, in 1592 and 1692, the European colonists and Native Ameri-
cans made almost no acknowledgment of the centennial and bicentennial of
the Columbian voyages. Indeed, there was little acknowledgment of Colum-
bus as the “founder” of America. By 1792, however, the situation had changed,
and a growing Columbian “sect” had emerged among former colonists and
new citizens of the United States. People in the United States began to cel-
ebrate Columbus as the man who had “discovered” the new world. Colum-
bia as a symbol took shape during this era, and people across the continent
used one form of Columbus or another to name new cities and capitals. By
1892, the celebration of Columbianism was in full swing. King’s College had
changed its name to Columbia, and the U.S. Congress had funded the
Columbian Exposition for the 1892 World’s Fair. It was in the period be-
tween the third and fourth centennials that the flat earth became a key
feature of the story, popularized in no small part by Washington Irving’s
1830 biography of Columbus.24

Things had changed quite significantly by 1992. For example, in its ex-
hibition to remember (“celebrate” and “commemorate” were contested words
by 1992) the 500th anniversary of the Columbian voyages, the Smithsonian
museum made no mention of “discovery,” preferring to call its exhibit the
“Columbian Exchange.” Moreover, Columbus no longer held sway as an
unquestioned hero, and many communities chose to focus on conquest and
invasion in marking October 12, 1992. For example, the city council in Cleve-
land, Ohio, changed the name of Columbus Day to Indigenous People’s
Day. In crafting this lecture, I also selected supporting documents and texts
as handouts. For example, I gave students longer sections from Washington
Irving’s The Life and Voyages of Christopher Columbus 25  or Kirkpatrick Sales’
critical Conquest of Paradise26  as examples of the different perspectives his-
torians took in the nineteenth and twentieth centuries.
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We treated the lecture as a secondary source, as a historical account
constructed by the history teacher that other historians—i.e., history stu-
dents—could use to investigate a historical problem. Consequently, at key
points during the lecture, we stopped to employ our tools for thinking about
historical accounts, asking, for example, “What are you hearing that sup-
ports, contests, or expands your thinking abut this issue?” The lecture did
not answer exhaustively the larger questions concerning why certain ac-
counts came into and out of fashion or why historians “changed their minds.”
But going well beyond the standard view of the lecture as a way to transmit
information, this lecture provided needed intellectual support at a critical
juncture to help students extend their historical understanding.

CONCLUSION
When my high school students began to study history, they tended to

view the subject as a fixed entity, a body of facts that historians retrieved and
placed in textbooks (or in the minds of history teachers) for students to
memorize. The purpose of history, if it had one, was to somehow inoculate
students from repeating past errors. The process of learning history was
straightforward and, while not always exciting, relatively simple. Ironically,
when I first entered a school to become a history teacher over 30 years ago,
I held a similar view, often supported by my education and history courses—
that teaching history was relatively straightforward and, while not always
exciting, relatively simple. I no longer hold such innocent and naive views
of learning or teaching history, and I try to disabuse my students of these
views as well. Indeed, our experiences in my history classrooms have taught
us that, to paraphrase Yogi Berra, it’s not what we don’t know that’s the
issue, it’s what we know for sure that just isn’t so. As this chapter has shown,
learning and teaching history demands complex thinking by both teachers
and students. It centers around interesting, generative, and organizing prob-
lems; critical weighing of evidence and accounts; suspension of our views to
understand those of others; use of facts, concepts, and interpretations to
make judgments; development of warrants for those judgments; and later, if
the evidence persuades, changes in our views and judgments.

Helping students develop such historical literacy requires that history
teachers expand their understanding of history learning, a task supported by
the ideas found in How People Learn and the emerging scholarship on his-
torical thinking. Such research paints a complex picture of learning that
helps teachers rethink the connections among students’ preinstructional ideas,
curricular content, historical expertise, and pedagogy. This view of learning
avoids the false dichotomies that have defined and hindered so many past
attempts to improve history instruction. It helps teachers go beyond facile
either–or choices to show that traditional methods, such as lectures, can be
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vital and engaging ways of helping students use historical facts and ideas
and that, despite the enthusiasm hands-on activities generate, they do not
automatically foster historical thinking. More important, this scholarship sug-
gests ways teachers may transform both traditional and newer pedagogical
methods to help deepen students’ historical understanding. To borrow lan-
guage from my case study, How People Learn expands and challenges our
thinking about learning history, and thus assists teachers in marshaling the
effort and understanding needed to enact a more sophisticated and effective
historical pedagogy.

We should harbor no illusions about the challenges awaiting teachers
and students engaged in such history instruction. Teaching the stories of the
past while also teaching students how to read, criticize, and evaluate these
stories is a complex task. It is difficult to help students recognize that all
historical accounts, including those we hold, have a history. While encour-
aging students to recognize that all history involves interpretation, teachers
must simultaneously challenge the easy conclusion that all interpretations
are therefore equally compelling. Rather, historical literacy demands that
students learn to evaluate arguments and decide which positions, given the
evidence, are more or less plausible, better or worse. Historical study asks
students to consider what they know, how they know it, and how confi-
dently or tentatively they are “entitled” to hold their views.

It is equally important to remember the pleasures that such historical
study can provide both teachers and students. Through history, teachers can
fill the class with enduring human dramas and dilemmas, fascinating myster-
ies, and an amazing cast of historical characters involved in events that
exemplify the best and worst of human experience. In what other field of
study can students experience such a range of possibilities and get to know
so many people and places? Where else would my students have the chance
to encounter fifteenth-century Europeans and Native Americans, people from
Christopher Columbus to Montezuma, and life in so many different societies
and cultures?

Even this brief description of the difficulties and joys involved in learn-
ing history reveals why the study of history is so crucial and, therefore,
worth our efforts. “History,” historian Peter Stearns has written, “should be
studied because it is essential to individuals and to society, and because it
harbors beauty”.27 A disciplined study of history promotes exactly the type
of reasoned thought our students deserve to have and democratic societies
so desperately need.
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5
Mathematical Understanding:

An Introduction
Karen C. Fuson, Mindy Kalchman, and John D. Bransford

For many people, free association with the word “mathematics” would
produce strong, negative images. Gary Larson published a cartoon entitled
“Hell’s Library” that consisted of nothing but book after book of math word
problems. Many students—and teachers—resonate strongly with this cartoon’s
message. It is not just funny to them; it is true.

Why are associations with mathematics so negative for so many people?
If we look through the lens of How People Learn, we see a subject that is
rarely taught in a way that makes use of the three principles that are the
focus of this volume. Instead of connecting with, building on, and refining
the mathematical understandings, intuitions, and resourcefulness that stu-
dents bring to the classroom (Principle 1), mathematics instruction often
overrides students’ reasoning processes, replacing them with a set of rules
and procedures that disconnects problem solving from meaning making.
Instead of organizing the skills and competences required to do mathemat-
ics fluently around a set of core mathematical concepts (Principle 2), those
skills and competencies are often themselves the center, and sometimes the
whole, of instruction. And precisely because the acquisition of procedural
knowledge is often divorced from meaning making, students do not use
metacognitive strategies (Principle 3) when they engage in solving math-
ematics problems. Box 5-1 provides a vignette involving a student who gives
an answer to a problem that is quite obviously impossible. When quizzed,
he can see that his answer does not make sense, but he does not consider it
wrong because he believes he followed the rule. Not only did he neglect to
use metacognitive strategies to monitor whether his answer made sense, but
he believes that sense making is irrelevant.
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One boy, quite a good student, was working on the problem, “If you have 6 jugs,
and you want to put 2/3 of a pint of lemonade into each jug, how much lemonade
will you need?” His answer was 18 pints. I said, “How much in each jug?” “Two-
thirds of a pint.” I said, “Is that more or less that a pint?” “Less.” I said, “How
many jugs are there?” “Six.” I said, “But that [the answer of 18 pints] doesn’t
make any sense.” He shrugged his shoulders and said, “Well, that’s the way the
system worked out.” Holt argues: “He has long since quit expecting school to
make sense. They tell you these facts and rules, and your job is to put them down
on paper the way they tell you. Never mind whether they mean anything or not.”1

BOX 5-1 Computation Without Comprehension: An Observation by
John Holt

A recent report of the National Research Council,2  Adding It Up, reviews
a broad research base on the teaching and learning of elementary school
mathematics. The report argues for an instructional goal of “mathematical
proficiency,” a much broader outcome than mastery of procedures. The
report argues that five intertwining strands constitute mathematical profi-
ciency:

1. Conceptual understanding—comprehension of mathematical con-
cepts, operations, and relations

2. Procedural fluency—skill in carrying out procedures flexibly, accu-
rately, efficiently, and appropriately

3. Strategic competence—ability to formulate, represent, and solve math-
ematical problems

4. Adaptive reasoning—capacity for logical thought, reflection, expla-
nation, and justification

5. Productive disposition—habitual inclination to see mathematics as
sensible, useful, and worthwhile, coupled with a belief in diligence and
one’s own efficacy

These strands map directly to the principles of How People Learn. Prin-
ciple 2 argues for a foundation of factual knowledge (procedural fluency),
tied to a conceptual framework (conceptual understanding), and organized
in a way to facilitate retrieval and problem solving (strategic competence).
Metacognition and adaptive reasoning both describe the phenomenon of
ongoing sense making, reflection, and explanation to oneself and others.
And, as we argue below, the preconceptions students bring to the study of
mathematics affect more than their understanding and problem solving; those
preconceptions also play a major role in whether students have a productive
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disposition toward mathematics, as do, of course, their experiences in learn-
ing mathematics.

The chapters that follow on whole number, rational number, and func-
tions look at the principles of How People Learn as they apply to those
specific domains. In this introduction, we explore how those principles ap-
ply to the subject of mathematics more generally. We draw on examples
from the Children’s Math World project, a decade-long research project in
urban and suburban English-speaking and Spanish-speaking classrooms.3

PRINCIPLE #1: TEACHERS MUST ENGAGE
STUDENTS’ PRECONCEPTIONS

At a very early age, children begin to demonstrate an awareness of
number.4 As with language, that awareness appears to be universal in nor-
mally developing children, though the rate of development varies at least in
part because of environmental influences.5

But it is not only the awareness of quantity that develops without formal
training. Both children and adults engage in mathematical problem solving,
developing untrained strategies to do so successfully when formal experi-
ences are not provided. For example, it was found that Brazilian street chil-
dren could perform mathematics when making sales in the street, but were
unable to answer similar problems presented in a school context.6  Likewise,
a study of housewives in California uncovered an ability to solve mathemati-
cal problems when comparison shopping, even though the women could
not solve problems presented abstractly in a classroom that required the
same mathematics.7 A similar result was found in a study of a group of
Weight Watchers, who used strategies for solving mathematical measure-
ment problems related to dieting that they could not solve when the prob-
lems were presented more abstractly.8 And men who successfully handi-
capped horse races could not apply the same skill to securities in the stock
market.9

These examples suggest that people possess resources in the form of
informal strategy development and mathematical reasoning that can serve as
a foundation for learning more abstract mathematics. But they also suggest
that the link is not automatic. If there is no bridge between informal and
formal mathematics, the two often remain disconnected.

The first principle of How People Learn emphasizes both the need to
build on existing knowledge and the need to engage students’ preconcep-
tions—particularly when they interfere with learning. In mathematics, cer-
tain preconceptions that are often fostered early on in school settings are in
fact counterproductive. Students who believe them can easily conclude that
the study of mathematics is “not for them” and should be avoided if at all
possible. We discuss these preconceptions below.
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Some Common Preconceptions About Mathematics

Preconception #1: Mathematics is about learning to compute.

Many of us who attended school in the United States had mathematics
instruction that focused primarily on computation, with little attention to
learning with understanding. To illustrate, try to answer the following ques-
tion:

What, approximately, is the sum of 8/9 plus 12/13?

Many people immediately try to find the lowest common denominator
for the two sets of fractions and then add them because that is the procedure
they learned in school. Finding the lowest common denominator is not easy
in this instance, and the problem seems difficult. A few people take a con-
ceptual rather than a procedural (computational) approach and realize that
8/9 is almost 1, and so is 12/13, so the approximate answer is a little less
than 2.

The point of this example is not that computation should not be taught
or is unimportant; indeed, it is very often critical to efficient problem solv-
ing. But if one believes that mathematics is about problem solving and that
computation is a tool for use to that end when it is helpful, then the above
problem is viewed not as a “request for a computation,” but as a problem to
be solved that may or may not require computation—and in this case, it
does not.

If one needs to find the exact answer to the above problem, computa-
tion is the way to go. But even in this case, conceptual understanding of the
nature of the problem remains central, providing a way to estimate the cor-
rectness of a computation. If an answer is computed that is more than 2 or
less than 1, it is obvious that some aspect of problem solving has gone awry.
If one believes that mathematics is about computation, however, then sense
making may never take place.

Preconception #2: Mathematics is about “following rules” to
guarantee correct answers.

Related to the conception of mathematics as computation is that of math-
ematics as a cut-and-dried discipline that specifies rules for finding the right
answers. Rule following is more general than performing specific computa-
tions. When students learn procedures for keeping track of and canceling
units, for example, or learn algebraic procedures for solving equations, many
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view use of these procedures only as following the rules. But the “rules”
should not be confused with the game itself.

The authors of the chapters in this part of the book provide important
suggestions about the much broader nature of mathematical proficiency and
about ways to make the involving nature of mathematical inquiry visible to
students. Groups such as the National Council of Teachers of Mathematics10

and the National Research Council11  have provided important guidelines for
the kinds of mathematics instruction that accord with what is currently known
about the principles of How People Learn. The authors of the following
chapters have paid careful attention to this work and illustrate some of its
important aspects.

In reality, mathematics is a constantly evolving field that is far from cut
and dried. It involves systematic pattern finding and continuing invention.
As a simple example, consider the selection of units that are relevant to
quantify an idea such as the fuel efficiency of a vehicle. If we choose miles
per gallon, a two-seater sports car will be more efficient than a large bus. If
we choose passenger miles per gallon, the bus will be more fuel efficient
(assuming it carries large numbers of passengers). Many disciplines make
progress by inventing new units and metrics that provide insights into previ-
ously invisible relationships.

Attention to the history of mathematics illustrates that what is taught at
one point in time as a set of procedures really was a set of clever inventions
designed to solve pervasive problems of everyday life. In Europe in the
Middle Ages, for example, people used calculating cloths marked with ver-
tical columns and carried out procedures with counters to perform calcula-
tions. Other cultures fastened their counters on a rod to make an abacus.
Both of these physical means were at least partially replaced by written
methods of calculating with numerals and more recently by methods that
involve pushing buttons on a calculator. If mathematics procedures are un-
derstood as inventions designed to make common problems more easily
solvable, and to facilitate communications involving quantity, those proce-
dures take on a new meaning. Different procedures can be compared for
their advantages and disadvantages. Such discussions in the classroom can
deepen students’ understanding and skill.

Preconception #3: Some people have the ability to “do math”
and some don’t.

This is a serious preconception that is widespread in the United States,
but not necessarily in other countries. It can easily become a self-fulfilling
prophesy. In many countries, the ability to “do math” is assumed to be
attributable to the amount of effort people put into learning it.12  Of course,



222 HOW STUDENTS LEARN: MATHEMATICS IN THE CLASSROOM

some people in these countries do progress further than others, and some
appear to have an easier time learning mathematics than others. But effort is
still considered to be the key variable in success. In contrast, in the United
States we are more likely to assume that ability is much more important than
effort, and it is socially acceptable, and often even desirable, not to put forth
effort in learning mathematics. This difference is also related to cultural
differences in the value attributed to struggle. Teachers in some countries
believe it is desirable for students to struggle for a while with problems,
whereas teachers in the United States simplify things so that students need
not struggle at all.13

 This preconception likely shares a common root with the others. If
mathematics learning is not grounded in an understanding of the nature of
the problem to be solved and does not build on a student’s own reasoning
and strategy development, then solving problems successfully will depend
on the ability to recall memorized rules. If a student has not reviewed those
rules recently (as is the case when a summer has passed), they can easily be
forgotten. Without a conceptual understanding of the nature of problems
and strategies for solving them, failure to retrieve learned procedures can
leave a student completely at a loss.

Yet students can feel lost not only when they have forgotten, but also
when they fail to “get it” from the start. Many of the conventions of math-
ematics have been adopted for the convenience of communicating efficiently
in a shared language. If students learn to memorize procedures but do not
understand that the procedures are full of such conventions adopted for
efficiency, they can be baffled by things that are left unexplained. If students
never understand that x and y have no intrinsic meaning, but are conven-
tional notations for labeling unknowns, they will be baffled when a z ap-
pears. When an m precedes an x in the equation of a line, students may
wonder, Why m? Why not s for slope? If there is no m, then is there no slope?
To someone with a secure mathematics understanding, the missing m is
simply an unstated m = 1. But to a student who does not understand that the
point is to write the equation efficiently, the missing m can be baffling.
Unlike language learning, in which new expressions can often be figured
out because they are couched in meaningful contexts, there are few clues to
help a student who is lost in mathematics. Providing a secure conceptual
understanding of the mathematics enterprise that is linked to students’ sense-
making capacities is critical so that students can puzzle productively over
new material, identify the source of their confusion, and ask questions when
they do not understand.
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Engaging Students’ Preconceptions and Building on
Existing Knowledge

Engaging and building on student preconceptions, then, poses two in-
structional challenges. First, how can we teach mathematics so students come
to appreciate that it is not about computation and following rules, but about
solving important and relevant quantitative problems? This perspective in-
cludes an understanding that the rules for computation and solution are a
set of clever human inventions that in many cases allow us to solve complex
problems more easily, and to communicate about those problems with each
other effectively and efficiently. Second, how can we link formal mathemat-
ics training with students’ informal knowledge and problem-solving capaci-
ties?

Many recent research and curriculum development efforts, including
those of the authors of the chapters that follow, have addressed these ques-
tions. While there is surely no single best instructional approach, it is pos-
sible to identify certain features of instruction that support the above goals:

• Allowing students to use their own informal problem-solving strate-
gies, at least initially, and then guiding their mathematical thinking toward
more effective strategies and advanced understandings.

• Encouraging math talk so that students can clarify their strategies to
themselves and others, and compare the benefits and limitations of alternate
approaches.

• Designing instructional activities that can effectively bridge commonly
held conceptions and targeted mathematical understandings.

Allowing Multiple Strategies

To illustrate how instruction can be connected to students’ existing knowl-
edge, consider three subtraction methods encountered frequently in urban
second-grade classrooms involved in the Children’s Math Worlds Project (see
Box 5-2). Maria, Peter, and Manuel’s teacher has invited them to share their
methods for solving a problem, and each of them has displayed a different
method. Two of the methods are correct, and one is mostly correct but has
one error. What the teacher does depends on her conception of what math-
ematics is.

One approach is to show the students the “right” way to subtract and
have them and everyone else practice that procedure. A very different ap-
proach is to help students explore their methods and see what is easy and
difficult about each. If students are taught that for each kind of math situa-
tion or problem, there is one correct method that needs to be taught and
learned, the seeds of the disconnection between their reasoning and strat-
egy development and “doing math” are sown. An answer is either wrong or
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BOX 5-2 Three Subtraction Methods

Maria’s add-equal- Peter’s ungrouping Manuel’s mixed
quantities method method method

        11     14           11       14
 1 2 14  1  2   4  1   2     4
– 15  6 –   5   6  –  1

 5     6

    6  8      6   8       5     8

right, and one does not need to look at wrong answers more deeply—one
needs to look at how to get the right answer. The problem is not that stu-
dents will fail to solve the problem accurately with this instructional ap-
proach; indeed, they may solve it more accurately. But when the nature of
the problem changes slightly, or students have not used the taught approach
for a while, they may feel completely lost when confronting a novel prob-
lem because the approach of developing strategies to grapple with a prob-
lem situation has been short-circuited.

If, on the other hand, students believe that for each kind of math situa-
tion or problem there can be several correct methods, their engagement in
strategy development is kept alive. This does not mean that all strategies are
equally good. But students can learn to evaluate different strategies for their
advantages and disadvantages. What is more, a wrong answer is usually
partially correct and reflects some understanding; finding the part that is
wrong and understanding why it is wrong can be a powerful aid to under-
standing and promotes metacognitive competencies. A vignette of students
engaged in the kind of mathematical reasoning that supports active strategy
development and evaluation appears in Box 5-3.

It can be initially unsettling for a teacher to open up the classroom to
calculation methods that are new to the teacher. But a teacher does not have
to understand a new method immediately or alone, as indicated in the de-
scription in the vignette of how the class together figured out over time how
Maria’s method worked (this method is commonly taught in Latin America
and Europe). Understanding a new method can be a worthwhile mathemati-
cal project for the class, and others can be involved in trying to figure out
why a method works. This illustrates one way in which a classroom commu-
nity can function. If one relates a calculation method to the quantities in-
volved, one can usually puzzle out what the method is and why it works.
This also demonstrates that not all mathematical issues are solved or under-
stood immediately; sometimes sustained work is necessary.
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BOX 5-3 Engaging Students’ Problem-Solving Strategies

The following example of a classroom discussion shows how second-
grade students can explain their methods rather than simply performing
steps in a memorized procedure. It also shows how to make student
thinking visible. After several months of teaching and learning, the stu-
dents reached the point illustrated below. The students’ methods are
shown in Box 5-2.

Teacher Maria, can you please explain to your friends
in the class how you  solved the problem?

Maria Six is bigger than 4, so I can’t subtract here
[pointing] in the ones.

So I have to get more ones. But I have to be
fair when I get more  ones, so I add ten to both
my numbers. I add a ten here in the top  of the
ones place [pointing] to change the 4 to a 14,
and I add a ten  here in the bottom in the tens
place, so I write another ten by
my 5.

So now I count up from 6 to 14, and I get 8
ones [demonstrating by  counting “6, 7, 8, 9,
10, 11, 12, 13, 14” while raising a finger for
each word from 7 to 14]. And I know my
doubles, so 6 plus 6 is 12, so I have 6 tens left.
[She thought, “1 + 5 = 6 tens and 6 + ? = 12
tens. Oh, I know 6 + 6 = 12, so my answer is 6
tens.”]

Jorge I don’t see the other 6 in your tens. I only see
one 6 in your  answer.

Maria The other 6 is from adding my 1 ten to the 5
tens to get 6 tens. I  didn’t write it down.

Andy But you’re changing the problem. How do you
get the right  answer?

Maria If I make both numbers bigger by the same
amount, the difference will stay the same.
Remember we looked at that on drawings last
week and on the meter stick.

Michelle Why did you count up?

Maria Counting down is too hard, and my mother
taught me to count up to subtract in first
grade.
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Teacher How many of you remember how confused we
were when we first saw Maria’s method last
week? Some of us could not figure out what
she was doing even though Elena and Juan
and Elba did it the same way. What did we do?

Rafael We made drawings with our ten-sticks and
dots to see what those numbers meant. And
we figured out they were both tens. Even
though the 5 looked like a 15, it was really just
6. And we went home to see if any of our
parents could explain it to us, but we had to
figure it out ourselves and it took us 2 days.

Teacher Yes, I was asking other teachers, too. We
worked on other methods too, but we kept
trying to understand what this method was
and why it worked. And Elena and Juan
decided it was clearer if they crossed out the 5
and wrote a 6, but Elba and Maria liked to do it
the way they learned at home. Any other
questions or comments for Maria? No? Ok,
Peter, can you explain your method?

Peter Yes, I like to ungroup my top number when I
don’t have enough to subtract everywhere. So
here I ungrouped 1 ten and gave it to the 4
ones to make 14 ones, so I had 1 ten left here.
So 6 up to 10 is 4 and 4 more up to 14 is 8, so
14 minus 6 is 8 ones. And 5 tens up to 11 tens
is 6 tens. So my answer is 68.

Carmen How did you know it was 11 tens?

Peter Because it is 1 hundred and 1 ten and that is 11
tens.

Carmen I don’t get it.

Peter Because 1 hundred is 10 tens.

Carmen Oh, so why didn’t you cross out the 1 hundred
and put it with the tens to make 11 tens like
Manuel?

Peter I don’t need to. I just know it is 11 tens by
looking at it.

Teacher Manuel, don’t erase your problem. I know you
think it is probably wrong because you got a
different answer, but remember how making a
mistake helps everyone learn—because other

BOX 5-3 Continued
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students make that same mistake and you
helped us talk about it. Do you want to draw a
picture and think about your method while we
do the next problem, or do you want someone
to help you?

Manuel Can Rafael help me?

Teacher Yes, but what kind of helping should Rafael
do?

Manuel He should just help me with what I need help
on and not do it for me.

Teacher Ok, Rafael, go up and help Manuel that way
while we go on to the next problem. I think it
would help you to draw quick-tens and ones to
see what your numbers mean. [These draw-
ings are explained later.] But leave your first
solution so we can all see where the problem
is. That helps us all get good at debugging—

finding our mistakes. Do we all make mis-
takes?

Class Yes.

Teacher Can we all get help from each other?

Class Yes.

Teacher So mistakes are just a part of learning. We
learn from our mistakes.  Manuel is going to
be brave and share his mistake with us so we
can all learn from it.

Manuel’s method combined Maria’s add-equal-quantities method,
which he had learned at home, and Peter’s ungrouping method, which he
had learned at school. It increases the ones once and decreases the tens
twice by subtracting a ten from the top number and adding a ten to the
bottom subtracted number. In the Children’s Math Worlds Project, we
rarely found children forming such a meaningless combination of meth-
ods if they understood tens and ones and had a method of drawing them
so they could think about the quantities in a problem (a point discussed
more later). Students who transferred into our classes did sometimes
initially use Manuel’s mixed approach. But students were eventually helped
to understand both the strengths and weaknesses of their existing meth-
ods and to find ways of improving their approaches.

SOURCE: Karen Fuson, Children’s Math Worlds Project.
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Encouraging Math Talk

One important way to make students’ thinking visible is through math
talk—talking about mathematical thinking. This technique may appear obvi-
ous, but it is quite different from simply giving lectures or assigning text-
book readings and then having students work in isolation on problem sets
or homework problems. Instead, students and teachers actively discuss how
they approached various problems and why. Such communication about
mathematical thinking can help everyone in the classroom understand a
given concept or method because it elucidates contrasting approaches, some
of which are wrong—but often for interesting reasons. Furthermore, com-
municating about one’s thinking is an important goal in itself that also facili-
tates other sorts of learning. In the lower grades, for example, such math
talk can provide initial experiences with mathematical justification that cul-
minate in later grades with more formal kinds of mathematical proof.

An emphasis on math talk is also important for helping teachers become
more learner focused and make stronger connections with each of their
students. When teachers adopt the role of learners who try to understand
their students’ methods (rather than just marking the students’ procedures
and answers as correct or incorrect), they frequently discover thinking that
can provide a springboard for further instruction, enabling them to extend
thinking more deeply or understand and correct errors. Note that, when
beginning to make student thinking visible, teachers must focus on the com-
munity-centered aspects of their instruction. Students need to feel comfort-
able expressing their ideas and revising their thinking when feedback sug-
gests the need to do so.

Math talk allows teachers to draw out and work with the preconcep-
tions students bring with them to the classroom and then helps students
learn how to do this sort of work for themselves and for others. We have
found that it is also helpful for students to make math drawings of their
thinking to help themselves in problem solving and to make their thinking
more visible (see Figure 5-1). Such drawings also support the classroom
math talk because they are a common visual referent for all participants.
Students need an effective bridge between their developing understandings
and formal mathematics. Teachers need to use carefully designed visual,
linguistic, and situational conceptual supports to help students connect their
experiences to formal mathematical words, notations, and methods.

The idea of conceptual support for math talk can be further clarified by
considering the language students used in the vignette in Box 5-3 when they
explained their different multidigit methods. For these explanations to be-
come meaningful in the classroom, it was crucially important that the stu-
dents explain their multidigit adding or subtracting methods using the mean-
ingful words in the middle pedagogical triangle of Figure 5-2 (e.g., “three
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FIGURE 5-1

tens six ones”), as well as the usual math words (e.g., “thirty-six”). It is
through such extended connected explanations and use of the quantity words
“tens” and “ones” that the students in the Children’s Math Worlds Project
came to explain their methods. Their explanations did not begin that way,
and the students did not spontaneously use the meaningful language when
describing their methods. The teacher needed to model the language and
help students use it in their descriptions. More-advanced students also helped
less-advanced students learn by modeling, asking questions, and helping
others form more complete descriptions.

Initially in the Children’s Math Worlds Project, all students made con-
ceptual support drawings such as those in Figure 5-1. They explicitly linked
these drawings to their written methods during explanations. Such drawings
linked to the numerical methods facilitated understanding, accuracy, com-
munication, and helping. Students stopped making drawings when they were
no longer needed (this varied across students by months). Eventually, most
students applied numerical methods without drawings, but these numerical
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methods then carried for the members of the classroom the meanings from
the conceptual support drawings. If errors crept in, students were asked to
think about (or make) a drawing and most errors were then self-corrected.

Designing Bridging Instructional Activities

The first two features of instruction discussed above provide opportuni-
ties for students to use their own strategies and to make their thinking visible
so it can be built on, revised, and made more formal. This third strategy is
more proactive. Research has uncovered common student preconceptions
and points of difficulty with learning new mathematical concepts that can be
addressed preemptively with carefully designed instructional activities.

This kind of bridging activity is used in the Children’s Math Worlds
curriculum to help students relate their everyday, experiential, informal un-
derstanding of money to the formal school concepts of multidigit numbers.
Real-world money is confusing for many students (e.g., dimes are smaller
than pennies but are worth 10 times as much). Also, the formal school math
number words and notations are abstract and potentially misleading (e.g.,
36 looks like a 3 and a 6, not like 30 and 6) and need to be linked to visual
quantities of tens and ones to become meaningful. Fuson designed concep-
tual “supports” into the curriculum to bridge the two. The middle portion of
Figure 5-2 shows an example of the supports that were used to help stu-
dents build meaning. A teacher or curriculum designer can make a frame-
work like that of Figure 5-2 for any math domain by selecting those concep-
tual supports that will help students make links among the math words,
written notations, and quantities in that domain.

Identifying real-world contexts whose features help direct students’ at-
tention and thinking in mathematically productive ways is particularly help-
ful in building conceptual bridges between students’ informal experiences
and the new formal mathematics they are learning. Examples of such bridg-
ing contexts are a key feature of each of the three chapters that follow.

PRINCIPLE #2: UNDERSTANDING REQUIRES
FACTUAL KNOWLEDGE AND CONCEPTUAL
FRAMEWORKS

The second principle of How People Learn suggests the importance of
both conceptual understanding and procedural fluency, as well as an effec-
tive organization of knowledge—in this case one that facilitates strategy
development and adaptive reasoning. It would be difficult to name a disci-
pline in which the approach to achieving this goal is more hotly debated
than mathematics. Recognition of the weakness in the conceptual under-
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standing of students in the United States has resulted in increasing attention
to the problems involved in teaching mathematics as a set of procedural
competences.14 At the same time, students with too little knowledge of pro-
cedures do not become competent and efficient problem solvers. When in-
struction places too little emphasis on factual and procedural knowledge,
the problem is not solved; it is only changed. Both are clearly critical.

Equally important, procedural knowledge and conceptual understand-
ings must be closely linked. As the mathematics confronted by students
becomes more complex through the school years, new knowledge and com-
petencies require that those already mastered be brought to bear. Box 1-6 in
Chapter 1, for example, describes a set of links in procedural and conceptual
knowledge required to support the ability to do multidigit subtraction with
regrouping—a topic encountered relatively early in elementary school. By
the time a student begins algebra years later, the network of knowledge
must include many new concepts and procedures (including those for ratio-
nal number) that must be effectively linked and available to support new
algebraic understandings. The teacher’s challenge, then, is to help students
build and consolidate prerequisite competencies, understand new concepts
in depth, and organize both concepts and competencies in a network of
knowledge. Furthermore, teachers must provide sustained and then increas-
ingly spaced opportunities to consolidate new understandings and proce-
dures.

In mathematics, such networks of knowledge often are organized as
learning paths from informal concrete methods to abbreviated, more gen-
eral, and more abstract methods. Discussing multiple methods in the class-
room—drawing attention to why different methods work and to the relative
efficiency and reliability of each—can help provide a conceptual ladder that
helps students move in a connected way from where they are to a more
efficient and abstract approach. Students also can adopt or adapt an inter-
mediate method with which they might feel more comfortable. Teachers can
help students move at least to intermediate “good-enough” methods that
can be understood and explained. Box 5-4 describes such a learning path
for single-digit addition and subtraction that is seen worldwide. Teachers in
some countries support students in moving through this learning path.

Developing Mathematical Proficiency

Developing mathematical proficiency requires that students master both
the concepts and procedural skills needed to reason and solve problems
effectively in a particular domain. Deciding which advanced methods all
students should learn to attain proficiency is a policy matter involving judg-
ments about how to use scarce instructional time. For example, the level 2
counting-on methods in Box 5-4 may be considered “good-enough” meth-
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ods; they are general, rapid, and sufficiently accurate that valuable school
time might better be spent on topics other than mastery of the whole net-
work of knowledge required for carrying out the level 3 methods. Decisions
about which methods to teach must also take into account that some meth-
ods are clearer conceptually and procedurally than the multidigit methods
usually taught in the United States (see Box 5-5). The National Research
Council’s Adding It Up reviews these and other accessible algorithms in other
domains.

This view of mathematics as involving different methods does not imply
that a teacher or curriculum must teach multiple methods for every domain.
However, alternative methods will frequently arise in a classroom, either
because students bring them from home (e.g., Maria’s add-equal-quantities
subtraction method, widely taught in other countries) or because students
think differently about many mathematical problems. Frequently there are
viable alternative methods for solving a problem, and discussing the advan-
tages and disadvantages of each can facilitate flexibility and deep under-
standing of the mathematics involved. In some countries, teachers empha-
size multiple solution methods and purposely give students problems that
are conducive to such solutions, and students solve a problem in more than
one way.

However, the less-advanced students in a classroom also need to be
considered. It can be helpful for either a curriculum or teacher or such less-
advanced students to select an accessible method that can be understood
and is efficient enough for the future, and for these students to concentrate
on learning that method and being able to explain it. Teachers in some
countries do this while also facilitating problem solving with alternative
methods.

Overall, knowing about student learning paths and knowledge networks
helps teachers direct math talk along productive lines toward valued knowl-
edge networks. Research in mathematics learning has uncovered important
information on a number of typical learning paths and knowledge networks
involved in acquiring knowledge about a variety of concepts in mathematics
(see the next three chapters for examples).

Instruction to Support Mathematical Proficiency

To teach in a way that supports both conceptual understanding and
procedural fluency requires that the primary concepts underlying an area of
mathematics be clear to the teacher or become clear during the process of
teaching for mathematical proficiency. Because mathematics has tradition-
ally been taught with an emphasis on procedure, adults who were taught
this way may initially have difficulty identifying or using the core conceptual
understandings in a mathematics domain.
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Children around the world pass through three levels of increasing sophis-
tication in methods of single-digit addition and subtraction. The first level
is direct modeling by counting all of the objects at each step (counting all
or taking away). Students can be helped to move rapidly from this first
level to counting on, in which counting begins with one addend. For ex-
ample, 8 + 6 is not solved by counting from 1 to 14 (counting all), but by
counting on 6 from 8: counting 8, 9, 10, 11, 12, 13, 14 while keeping track
of the 6 counted on.

For subtraction, Children’s Math Worlds does what is common in
many countries: it helps students see subtraction as involving a mystery
addend. Students then solve a subtraction problem by counting on from
the known addend to the known total. Earlier we saw how Maria solved
14 - 6 by counting up from 6 to 14, raising 8 fingers while doing so to find
that 6 plus 8 more is 14. Many students in the United States instead
follow a learning path that moves from drawing little sticks or circles for
all of the objects and crossing some out (e.g., drawing 14 sticks, crossing
out 6, and counting the rest) to counting down (14, 13, 12, 11, 10, 9, 8, 7,
6). But counting down is difficult and error prone. When first or second
graders are helped to move to a different learning path that solves sub-
traction problems by forward methods, such as counting on or adding on
over 10 (see below), subtraction becomes as easy as addition. For many
students, this is very empowering.

The third level of single-digit addition and subtraction is exemplified
by Peter in the vignette in Box 5-2. At this level, students can chunk

BOX 5-4 A Learning Path from Children’s Math Worlds for
Single-Digit Addition and Subtraction

The approaches in the three chapters that follow identify the central
conceptual structures in several areas of mathematics. The areas of focus—
whole number, rational number, and functions—were identified by Case
and his colleagues as requiring major conceptual shifts. In the first, students
are required to master the concept of quantity; in the second, the concept of
proportion and relative number; and in the third, the concept of dependence
in quantitative relationships. Each of these understandings requires that a
supporting set of concepts and procedural abilities be put in place. The
extensive research done by Griffin and Case on whole number, by Case and
Moss on rational number, and by Case and Kalchman on functions provides
a strong foundation for identifying the major conceptual challenges students
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numbers and relate these chunks. The chunking enables them to carry
out make-a-ten methods: they give part of one number to the other num-
ber to make a ten. These methods are taught in many countries. They are
very helpful in multidigit addition and subtraction because a number found
in this way is already thought of as 1 ten and some ones. For example, for
8 + 6, 6 gives 2 to 8 to make 10, leaving 4 in the 6, so 10 + 4 = 14. Solving
14 – 8 is done similarly: with 8, how many make 10 (2), plus the 4 in 14,
so the answer is 6. These make-a-ten methods demonstrate the learning
paths and network of knowledge required for advanced solution meth-
ods. Children may also use a “doubles” strategy for some problems—
e.g., 7 + 6 = 6 + 6 + 1= 12 + 1 = 13—because the doubles (for example,
6 + 6 or 8 + 8) are easy to learn.

The make-a-ten methods illustrate the importance of a network of
knowledge. Students must master three kinds of knowledge to be able
to carry out a make-a-ten method fluently: they must (1) for each number
below 10, know how much more makes 10; (2) break up any number
below 10 into all possible pairs of parts (because 9 + 6 requires knowing
6 = 1 + 5, but 8 + 6 requires knowing 6 = 2 + 4, etc.); and (3) know 10 +
1 = 11, 10 + 2 = 12, 10 + 3 = 13, etc., rapidly without counting.

Note that particular methods may be more or less easy for learners
from different backgrounds. For example, the make-a-ten methods are
easier for East Asian students, whose language says, “Ten plus one is
ten one, ten plus two is ten two,” than for English-speaking students,
whose language says, “Ten plus one is eleven, ten plus two is twelve,
etc.”

face in mastering these areas. This research program traced developmental/
experiential changes in children’s thinking as they engaged with innovative
curriculum. In each area of focus, instructional approaches were developed
that enable teachers to help children move through learning paths in pro-
ductive ways. In doing so, teachers often find that they also build a more
extensive knowledge network.

As teachers guide a class through learning paths, a balance must be
maintained between learner-centered and knowledge-centered needs.
The learning path of the class must also continually relate to individual
learner knowledge. Box 5-6 outlines two frameworks that can facilitate
such balance.
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BOX 5-5 Accessible Algorithms

In over a decade of working with a range of urban and suburban classrooms in the
Children’s Math Worlds Project, we found that one multidigit addition method and
one multidigit subtraction method were accessible to all students. The students
easily learned, understood, and remembered these methods and learned to draw
quantities for and explain them. Both methods are modifications of the usual U.S.
methods. The addition method is the write-new-groups-below method, in which
the new 1 ten or 1 hundred, etc., is written below the column on the line rather
than above the column (see Jackie’s method in Figure 5-1). In the subtraction fix-
everything-first method, every column in the top number that needs ungrouping is
ungrouped (in any order), and then the subtracting in every column is done (in any
order). Because this method can be done from either direction and is only a minor
modification of the common U.S. methods, learning-disabled and special-needs
students find it especially accessible. Both of these methods stimulate productive
discussions in class because they are easily related to the usual U.S. methods that
are likely to be brought to class by other students.

PRINCIPLE #3: A METACOGNITIVE APPROACH
ENABLES STUDENT SELF-MONITORING

Learning about oneself as a learner, thinker, and problem solver is an
important aspect of metacognition (see Chapter 1). In the area of mathemat-
ics, as noted earlier, many people who take mathematics courses “learn” that
“they are not mathematical.” This is an unintended, highly unfortunate, con-
sequence of some approaches to teaching mathematics. It is a consequence
that can influence people for a lifetime because they continue to avoid
anything mathematical, which in turn ensures that their belief about being
“nonmathematical” is true.15

An article written in 1940 by Charles Gragg, entitled “Because Wisdom
Can’t be Told,” is relevant to issues of metacognition and mathematics learn-
ing. Gragg begins with the following quotation from Balzac:

So he had grown rich at last, and thought to transmit to his only son all the
cut-and-dried experience which he himself had purchased at the price of
his lost illusions; a noble last illusion of age.

Except for the part about growing rich, Balzac’s ideas fit many peoples’
experiences quite well. In our roles as parents, friends, supervisors, and
professional educators, we frequently attempt to prepare people for the
future by imparting the wisdom gleaned from our own experiences. Some-
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Eliciting and then building on and using students’ mathematical thinking can be
challenging. Yet recent research indicates that teachers can move their students
through increasingly productive levels of classroom discourse. Hufferd-Ackles and
colleagues16  describe four levels of a “math-talk learning community,” beginning
with a traditional, teacher-directed format in which the teacher asks short-answer
questions, and student responses are directed to the teacher. At the next level,
“getting started,” the teacher begins to pursue and assess students’ mathemati-
cal thinking, focusing less on answers alone. In response, students provide brief
descriptions of their thinking. The third level is called “building.” At this point the
teacher elicits and students respond with fuller descriptions of their thinking, and
multiple methods are volunteered. The teacher also facilitates student-to-student
talk about mathematics. The final level is “math-talk.” Here students share re-
sponsibility for discourse with the teacher, justifying their own ideas and asking
questions of and helping other students.

Key shifts in teacher practice that support a class moving through these lev-
els include asking questions that focus on mathematical thinking rather than just
on answers, probing extensively for student thinking, modeling and expanding on
explanations when necessary, fading physically from the center of the classroom
discourse (e.g., moving to the back of the classroom), and coaching students in
their participatory roles in the discourse (“Everyone have a thinker question ready.”).

Related research indicates that when building a successful classroom dis-
course community, it is important to balance the process of discourse, that is, the
ways in which student ideas are elicited, with the content of discourse, the sub-
stance of the ideas that are discussed. In other words, how does a teacher ensure
both that class discussions provide sufficient space for students to share their
ideas and that discussions are mathematically productive? Sherin17  describes one
model for doing so whereby class discussions begin with a focus on “idea genera-
tion,” in which many student ideas are solicited. Next, discussion moves into a
“comparison and evaluation” phase, in which the class looks more closely at the
ideas that have been raised, but no new ideas are raised.

The teacher then “filters” ideas for the class, highlighting a subset of ideas
for further pursuit. In this way, student ideas are valued throughout discussion,
but the teacher also plays a role in determining the extent to which specific math-
ematical ideas are considered in detail. A class may proceed through several cycles
of these three phases in a single discussion.

BOX 5-6 Supporting Student and Teacher Learning Through a
Classroom Discourse Community
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times our efforts are rewarded, but we are often less successful than we
would like to be, and we need to understand why.

The idea that “wisdom can’t be told” helps educators rethink the strat-
egy of simply telling students that some topic (e.g., mathematics) is impor-
tant, and they can master it if they try. There are important differences be-
tween simply being told something and being able to experience it for oneself.
Students’ experiences have strong effects on their beliefs about themselves,
as well as their abilities to remember information and use it spontaneously
to solve new problems.18  If their experiences in mathematics classes involve
primarily frustration and failure, simply telling them, “trust me, this will be
relevant someday” or “believe me, you have the ability to understand this” is
a weak intervention. On the other hand, helping students experience their
own abilities to find patterns and problems, invent solutions (even if they
are not quite as good as expert solutions), and contribute to and learn from
discussions with others provides the kinds of experiences that can help
them learn with understanding, as well as change their views about the
subject matter and themselves.19

However, research on metacognition suggests that an additional instruc-
tional step is needed for optimal learning—one that involves helping stu-
dents reflect on their experiences and begin to see their ideas as instances of
larger categories of ideas. For example, students might begin to see their
way of showing more ones when subtracting as one of several ways to
demonstrate this same important mathematical idea.

One other aspect of metacognition that is nicely illustrated in the con-
text of mathematics involves the claim made in Chapter 1 that metacognition
is not simply a knowledge-free ability, but requires relevant knowledge of
the topics at hand. At the beginning of this chapter, we noted that many
students approach problems such as adding fractions as purely computa-
tional (e.g., “What is the approximate sum of 8/9 plus 11/13?”). Ideally, we
also want students to monitor the accuracy of their problem solving, just as
we want them to monitor their understanding when reading about science,
history, or literature.

One way to monitor the accuracy of one’s computation is to go back
and recheck each of the steps. Another way is to estimate the answer and
see whether there is a discrepancy between one’s computations and the
estimate. However, the ability to estimate requires the kind of knowledge
that might be called “number sense.” For the above fraction problem, for
example, a person with number sense who computes an answer and sees
that it is greater than 2 knows that the computation is obviously wrong. But
it is “obvious” only if the person has learned ways to think about number
that go beyond the ability merely to count and compute.
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Instruction That Supports Metacognition

Much of what we have discussed with regard to making student think-
ing visible can be thought of as ongoing assessment of students. Such as-
sessment can include students so they become involved in thinking about
their own mathematical progress and that of their classmates. Such ongoing
assessment can then become internalized as metacognitive self-monitoring.
Classroom communication about students’ mathematical thinking greatly fa-
cilitates both teacher and student assessment of learning. Teachers and stu-
dents can see difficulties particular students are having and can help those
students by providing explanations. Teachers can discern primitive solution
methods that need to be advanced to more effective methods. They also can
see how students are advancing in their helping and explaining abilities and
plan how to foster continued learning in those areas.

Students can also learn some general problem-solving strategies, such
as “make a drawing of the situation” or “ask yourself questions” that apply to
many different kinds of problems. Drawings and questions are a means of
self-monitoring. They also can offer teachers windows into students’ think-
ing and thus provide information about how better to help students along a
learning path to efficient problem-solving methods.

An Emphasis on Debugging

Metacognitive functioning is also facilitated by shifting from a focus on
answers as just right or wrong to a more detailed focus on “debugging” a
wrong answer, that is, finding where the error is, why it is an error, and
correcting it. Of course, good teachers have always done this, but there are
now two special reasons for doing so. One is the usefulness of this approach
in complex problem solving, such as debugging computer programs. Tech-
nological advances mean that more adults will need to do more complex
problem solving and error identification throughout their lives, so debug-
ging—locating the source of an error—is a good general skill that can be
learned in the math classroom.

The second reason is based on considerable amount of research in the
past 30 years concerning student errors. Figure 5-3 illustrates two such typi-
cal kinds of errors in early and late school topics. The partial student knowl-
edge reflected in each error is described in the figure. One can also see how
a focus on understanding can help students debug their own errors. For
example, asking how much the little “1’s” really represent can help students
start to see their error in the top example and thus modify the parts of the
method that are wrong.
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This error reflects a wrong generalization from 2-digit problems:
where the little 1 is put above the left-most column. Left-most and
next-left are confused in this solution. Trying to understand the
meanings of the 1s as 1 ten and as 1 hundred can debug this error.
The student does know to add ones, to add tens, and to add
hundreds and does this correctly.

A common error among middle school students is to treat an exponent as a
coefficient or multiplier. Here, Graham has generated a table of values for the
function y = 2x + 1 rather than y = x2 + 1. This type of error has broad implications.
For example, it will be difficult for students to develop a good conceptual
understanding for functions and the ways in which their representations are inter-
connected because the graph of y = 2x + 1 is a straight line rather than the parabolic
curve of y = x2 + 1. He does know, however, how to make a table of values and to
graph resulting pairs of values. He also knows how to solve for y in an equation
given x.

268

+  156
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Early Partial Knowledge

Later Partial Knowledge

FIGURE 5-3
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Internal and External Dialogue as Support for Metacognition

The research summarized in How People Learn and Adding It Up and
the professional experience summarized in the standards of the National
Council of Teachers of Mathematics all emphasize how important it is for
students to communicate about mathematics and for teachers to help them
learn to do so. Students can learn to reflect on and describe their mathemati-
cal thinking. They can learn to compare methods of solving a problem and
identify the advantages and disadvantages of each. Peers can learn to ask
thoughtful questions about other students’ thinking or help edit such state-
ments to clarify them. Students can learn to help each other, sometimes in
informal, spontaneous ways and sometimes in more organized, coaching-
partner situations. The vignette in Box 5-3 illustrates such communication
about mathematical thinking after it has been developed in a classroom.
Experience in the Children’s Math Worlds Project indicates that students
from all backgrounds can learn to think critically and ask thoughtful ques-
tions, reflect on and evaluate their own achievement, justify their points of
view, and understand the perspectives of others. Even first-grade students
can learn to interact in these ways.

Of course, teachers must help students learn to interact fruitfully. To this
end, teachers can model clear descriptions and supportive questioning or
helping techniques. In a classroom situation, some students may solve prob-
lems at the board while others solve them at their seats. Students can make
drawings or use notations to indicate how they thought about or solved a
problem. Selected students can then describe their solution methods, and
peers can ask questions to clarify and to give listeners a role. Sometimes,
pairs of students may explain their solutions, with the less-advanced partner
explaining first and the other partner then expanding and clarifying. Stu-
dents usually attend better if only two or three of their fellow students ex-
plain their solution method for a given problem. More students can solve at
the board, but the teacher can select the methods or the students for the
class to hear at that time. It is useful to vary the verbal level of such explain-
ers. Doing so assists all students in becoming better explainers by hearing
and helping classmates expand upon a range of explanations. The goal in all
of this discussion is to advance everyone’s thinking and monitoring of their
own understanding and that of other students rather than to conduct simple
turn taking, though of course over time, all students can have opportunities
to explain.

Seeking and Giving Help

Students must have enough confidence not only to engage with prob-
lems and try to solve them, but also to seek help when they are stuck. The
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dialogue that occurs in pair or class situations can help generate self-regulat-
ing speech that a student can produce while problem solving. Such helping
can also increase the metacognitive awareness of the helper as he or she
takes into consideration the thinking of the student being helped.

The Framework of How People Learn:
Seeking a Balanced Classroom Environment

The framework of How People Learn suggests that classroom environ-
ments should at the same time be learner-centered, knowledge-centered,
assessment-centered, and community-centered (see Chapter 1). These fea-
tures map easily to the preceding discussion of the three principles, as well
as to the chapters that follow. The instruction described is learner-centered
in that it draws out and builds on student thinking. It is also knowledge-
centered in that it focuses simultaneously on the conceptual understanding
and the procedural knowledge of a topic, which students must master to be
proficient, and the learning paths that can lead from existing to more ad-
vanced understanding. It is assessment-centered in that there are frequent
opportunities for students to reveal their thinking on a topic so the teacher
can shape instruction in response to their learning, and students can be
made aware of their own progress. And it is community-centered in that the
norms of the classroom community value student ideas, encourage produc-
tive interchange, and promote collaborative thinking.

Effective teaching and learning depend, however, on balance among
these features of the classroom environment. There must be continual con-
nections between the learner-centered focus on student knowledge and the
more formal knowledge networks that are the goals of teaching in a domain.
Traditional teaching has tended to emphasize the knowledge networks and
pay insufficient attention to conceptual supports and the need to build on
learner knowledge. Many students learn rote knowledge that cannot be
used adequately in solving problems. On the other hand, an overemphasis
on learner-centered teaching results in insufficient attention to connections
with valued knowledge networks, the crucially important guiding roles of
teachers and of learning accessible student methods, and the need to con-
solidate knowledge. Four such excesses are briefly discussed here.

First, some suggest that students must invent all their mathematical ideas
and that we should wait until they do so rather than teach ideas. This view,
of course, ignores the fact that all inventions are made within a supportive
culture and that providing appropriate supports can speed such inventions.
Too much focus on student-invented methods per se can hold students
back; those who use time-consuming methods that are not easily general-
ized need to be helped to move on to more rapid and generalizable “good-
enough” methods. A focus on sense making and understanding of the meth-
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ods that are used is the balanced focus, rather than an emphasis on whether
the method was invented by the student using it.

Second, classroom discussions may not be sufficiently guided by the
teacher through the learning path. Students may talk on and on, meandering
without much focus. Descriptions of student thinking may have a turn-tak-
ing, “every method is equally wonderful” flavor so that other students do not
listen carefully or ask questions, but passively await their turn to talk. Differ-
ent student methods may be described, but their advantages and disadvan-
tages, or at least their similar and different features, are not discussed. There
may be no building toward student-to-student talk, but everything said may
be directed toward the teacher.

Third, the use of real-world situations and conceptual supports may
consist more of a series of activities in which the mathematical ideas are not
sufficiently salient and not connected enough to the standard math notations
and vocabulary. The result may be a scattershot approach involving many
different activities rather than careful choices of core representations or bridg-
ing contexts that might guide students through a coherent learning path.

Fourth, learning may not be consolidated enough because of an exces-
sive focus on the initial learning activities. Time for consolidation of learn-
ing, with feedback loops should errors arise, is vital for mathematical flu-
ency.

The recent Third International Mathematics and Science Study showed
that teaching in the United States is still overwhelmingly traditional. How-
ever, the above caveats need to be kept in mind as teachers move forward in
implementing the principles of How People Learn.

NEXT STEPS
There are some curricula that implement, at least partially, the principles

of How People Learn. Even without extensive curricular support, however,
teachers can substantially improve their practice by understanding and us-
ing these principles. This is particularly true if they can examine their own
teaching practices, supported by a teaching–learning community of like-
minded colleagues. Such a community can help teachers create learning
paths for themselves that can move them from their present teaching prac-
tices to practices that conform more fully to the principles of How People
Learn and thereby create more effective classrooms. Two such teacher com-
munities, involving video clubs and lesson study, respectively, are summa-
rized in Boxes 5-7 and 5-8. A third approach to a teacher learning commu-
nity is to organize teacher discussions around issues that arise from teaching
a curriculum that supports conceptual approaches. Box 5-9 describes re-
search summarizing one productive focus for such discussions—the use of
openings in the curriculum where teachers can focus on student questions
or misunderstandings.
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BOX 5-7 Learning to Use Student Thinking in Teacher Video Clubs

Research indicates that teachers can develop their ability to attend to and interpret
student thinking not only in the midst of class discussions, but also outside of class
as they reflect on students’ ideas. One model for doing so is the use of video clubs
in which teachers meet together to watch and discuss video excerpts from their
classrooms.20  By providing teachers opportunities to examine student thinking with-
out the pressure of having to respond immediately, video clubs can help prompt
the development of new techniques for analyzing student thinking among teach-
ers—techniques that teachers can then bring back to their classrooms.

BOX 5-8 Lesson Study: Learning Together How to Build on Student
Knowledge

Lesson study is “a cycle in which teachers work together to consider their long-
term goals for students, bring those goals to life in actual ‘research lessons,’ and
collaboratively observe, discuss, and refine the lessons.”21  Lesson study has been
a major form of teacher professional development in Japan for many decades, and
in recent years has attracted the attention of U.S. teachers, school administrators,
and educational researchers.22  It is a simple idea. Teachers collaboratively plan a
lesson that is taught by one group member while others observe and carefully
collect data on student learning and behavior. The student data are then used to
reflect on the lesson and revise it as needed. Lesson study is a teacher-led process
in which teachers collaboratively identify a concept that is persistently difficult for
students, study the best available curriculum materials in order to rethink their
teaching of this topic, and plan and teach one or more “research lessons” that
enable them to see student reactions to their redesigned unit. Ideally, a lesson
study group allows teachers to share their expertise and knowledge, as well as
questions related to both teaching and subject matter. Lesson study groups may
also draw on knowledgeable outsiders as resources for content knowledge, group
facilitation, and so on.

NOTE: Resources, including a handbook, videotapes, listserve, and protocols for
teachers who wish to engage in lesson study, can be found at the websites of the
Lesson Study Research Group at Teachers College, Columbia University: (http://
www.tc.columbia.edu/lessonstudy/) and the Mills College Lesson Study Group
(www.lessonresearch.net). See also Lewis (2002).
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BOX 5-9 Teachers as Curriculum Designers: Using Openings in the
Curriculum to Determine Learning Paths

Even when using a prepared curriculum, teachers have an important role as cur-
riculum designers. In a study of two elementary teachers using a new textbook,
Remillard23  found that teachers made regular decisions about what parts of the
teacher’s guide to read, which suggestions to follow and to what ends, how to
structure students’ mathematical activities, and how to respond to students’ ques-
tions and ideas. The decisions teachers made had a substantial impact on the
curriculum experienced by students. In other words, written curriculum alone does
not determine students’ experiences in the classroom; this is the role of the teacher.

Remillard and Geist24  use the term “openings in the curriculum” to denote
those instances during instruction in which things do not go as described in the
preset curriculum. These openings are often prompted by students’ questions or
teachers’ observations about student understanding or misunderstanding. The
authors argue that teachers must navigate these openings by (1) carefully analyz-
ing student work and thinking, (2) weighing possible options for proceeding against
one’s goals for student learning, and (3) taking responsive action that is open to
ongoing examination and adjustment. They suggest that teaching with curriculum
guides can be improved as teachers recognize and embrace their role while navi-
gating openings in the curriculum to determine learning paths for students.

Similarly, Remillard25  found that teachers came to reflect on their beliefs and
understandings related to their teaching and its content while involved in the very
work of deciding what to do next by interpreting students’ understanding with
respect to their goals for the students and particular instructional tasks. Thus, some
of the most fruitful opportunities for teacher learning when using a new curriculum
occurred when teachers were engaged in the work of navigating openings in the
curriculum.

It will take work by teachers, administrators, researchers, parents, and
politicians to bring these new principles and goals to life in classrooms and
to create the circumstances in which this can happen. Nonetheless, there are
enough examples of the principles in action to offer a vision of the new
kinds of learning that can be accessible to all students and to all teachers.
Some materials to support teachers in these efforts do exist, and more are
being developed. Helpful examples of the three principles in action are
given in the chapters that follow. It is important to note, once again, that
other projects have generated examples that implement the principles of
How People Learn. Some of these examples can be found in the authors’
references to that research and in the suggested teacher reading list. All of
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this work indicates that we have begun the crucial journey into mathemati-
cal proficiency for all and that the principles of How People Learn can guide
us on this journey.
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6
Fostering the Development of

Whole-Number Sense:
Teaching Mathematics in the

Primary Grades
Sharon Griffin

After 15 years of inquiry into children’s understanding and learning of
whole numbers, I can sum up what I have learned very simply. To teach
math, you need to know three things. You need to know where you are
now (in terms of the knowledge children in your classroom have available
to build upon). You need to know where you want to go (in terms of the
knowledge you want all children in your classroom to acquire during the
school year). Finally, you need to know what is the best way to get there (in
terms of the learning opportunities you will provide to enable all children in
your class to achieve your stated objectives). Although this sounds simple,
each of these points is just the tip of a large iceberg. Each raises a question
(e.g., Where are we now?) that I have come to believe is crucial for the
design of effective mathematics instruction. Each also points to a body of
knowledge (the iceberg) to which teachers must have access in order to
answer that question. In this chapter, I explore each of these icebergs in turn
in the context of helping children in the primary grades learn more about
whole numbers.

Readers will recognize that the three things I believe teachers need to
know to teach mathematics effectively are similar in many respects to the
knowledge teachers need to implement the three How People Learn prin-
ciples (see Chapter 1) in their classrooms. This overlap should not be sur-
prising. Because teaching and learning are two sides of the same coin and
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because effective teaching is defined primarily in terms of the learning it
supports, we cannot talk about one without talking about the other. Thus
when I address each of the three questions raised above, I will at the same
time offer preschool and elementary mathematics teachers a set of resources
they can use to implement the three principles of How People Learn in their
classrooms and, in so doing, create classrooms that are student-centered,
knowledge-centered, community-centered, and assessment-centered.

Addressing the three principles of How People Learn while exploring
each question occurs quite naturally because the bodies of knowledge that
underlie effective mathematics teaching provide a rich set of resources that
teachers can use to implement these principles in their classrooms. Thus,
when I explore question 1 (Where are we now?) and describe the number
knowledge children typically have available to build upon at several specific
age levels, I provide a tool (the Number Knowledge test) and a set of ex-
amples of age-level thinking that teachers can use to enact Principle 1—
eliciting, building upon, and connecting student knowledge—in their class-
rooms. When I explore question 2 (Where do I want to go?) and describe
the knowledge networks that appear to be central to children’s mathematics
learning and achievement and the ways these networks are built in the
normal course of development, I provide a framework that teachers can use
to enact Principle 2—building learning paths and networks of knowledge—
in their classrooms. Finally, when I explore question 3 (What is the best way
to get there?) and describe elements of a mathematics program that has been
effective in helping children acquire whole-number sense, I provide a set of
learning tools, design principles, and examples of classroom practice that
teachers can use to enact Principle 3—building resourceful, self-regulating
mathematical thinkers and problem solvers—in their classrooms. Because
the questions I have raised are interrelated, as are the principles themselves,
teaching practices that may be effective in answering each question and in
promoting each principle are not limited to specific sections of this chapter,
but are noted throughout.

I have chosen to highlight the questions themselves in my introduction
to this chapter because it was this set of questions that motivated my inquiry
into children’s knowledge and learning in the first place. By asking this set
of questions every time I sat down to design a math lesson for young chil-
dren, I was able to push my thinking further and, over time, construct better
answers and better lessons. If each math teacher asks this set of questions
on a regular basis, each will be able to construct his or her own set of
answers for the questions, enrich our knowledge base, and improve math-
ematics teaching and learning for at least one group of children. By doing
so, each teacher will also embody the essence of what it means to be a
resourceful, self-regulating mathematics teacher. The questions themselves
are thus more important than the answers. But the reverse is also true:
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although good questions can generate good answers, rich answers can also
generate new and better questions.

I now turn to the answers I have found useful in my own work with
young children. By addressing question 2 (Where do I want to go?) first, I
hope to give readers a sense of the general direction in which we are head-
ing before I turn to question 1 (Where are we now?) and provide a detailed
description of the knowledge children generally have available to build upon
at each age level between 4 and 8. While individual children differ a great
deal in the rate at which they acquire number knowledge, teachers are
charged with teaching a class of students grouped by age. It is therefore
helpful in planning instruction to focus on the knowledge typical among
children of a particular age, with the understanding that there will be consid-
erable variation. In a subsequent section, I use what we have learned about
children’s typical age-level understandings to return to the issue of the knowl-
edge to be taught and to provide a more specific answer for question 2.

DECIDING WHAT KNOWLEDGE TO TEACH
All teachers are faced with a dizzying array of mathematics concepts

and skills they are expected to teach to groups of students who come to
their classrooms with differing levels of preparedness for learning. This is
true even at the preschool level. For each grade level, the knowledge to be
taught is prescribed in several documents—the national standards of the
National Council of Teachers of Mathematics (NCTM), state and district frame-
works, curriculum guides—that are not always or even often consistent.
Deciding what knowledge to teach to a class as a whole or to any individual
child in the class is no easy matter.

Many primary school teachers resolve this dilemma by selecting number
sense as the one set of understandings they want all students in their class-
rooms to acquire. This makes sense in many respects. In the NCTM stan-
dards, number sense is the major learning objective in the standard (num-
bers and operations) to which primary school teachers are expected to devote
the greatest amount of attention. Teachers also recognize that children’s
ability to handle problems in other areas (e.g., algebra, geometry, measure-
ment, and statistics) and to master the objectives listed for these standards is
highly dependent on number sense. Moreover, number sense is given a
privileged position on the report cards used in many schools, and teachers
are regularly required to evaluate the extent to which their students “demon-
strate number sense.” In one major respect, however, the choice of number
sense as an instructional objective is problematic. Although most teachers
and lay people alike can easily recognize number sense when they see it,
defining what it is and how it can be taught is much more difficult.
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Consider the responses two kindergarten children provide when asked
the following question from the Number Knowledge test (described in full
later in this chapter): “If you had four chocolates and someone gave you
three more, how many would you have altogether?”

Alex responds by scrunching up his brow momentarily and
saying, “seven.” When asked how he figured it out, he says,
“Well, ‘four’ and ‘four’ is ‘eight’ [displaying four fingers on
one hand and four on the other hand to demonstrate]. But
we only need three more [taking away one finger from one
hand to demonstrate]. So I went—‘seven,’ ‘eight.’ Seven is
one less than eight. So the answer is seven.”

Sean responds by putting up four fingers on one hand and
saying (under his breath), “Four. Then three more—‘five, six,
seven.’” In a normal tone of voice, Sean says “seven.”
When asked how he figured it out, Sean is able to articulate
his strategy, saying, “I started at four and counted—‘five,
six, seven’” (tapping the table three times as he counts up,
to indicate the quantity added to the initial set).

It will be obvious to all kindergarten teachers that the responses of both
children provide evidence of good number sense. The knowledge that lies
behind that sense may be much less apparent, however. What knowledge
do these children have that enables them to come up with the answer in the
first place and to demonstrate number sense in the process? Scholars have
studied children’s mathematical thinking and problem solving, tracing the
typical progression of understanding or developmental pathway for acquir-
ing number knowledge.1 This research suggests that the following under-
standings lie at the heart of the number sense that 5-year-olds such as Alex
and Sean are able to demonstrate on this problem: (1) they know the count-
ing sequence from “one” to “ten” and the position of each number word in
the sequence (e.g., that “five” comes after “four” and “seven” comes before
“eight”); (2) they know that “four” refers to a set of a particular size (e.g., it
has one fewer than a set of five and one more than a set of 3), and thus there
is no need to count up from “one” to get a sense of the size of this set; (3)
they know that the word “more” in the problem means that the set of four
chocolates will be increased by the precise amount (three chocolates) given
in the problem; (4) they know that each counting number up in the count-
ing sequence corresponds precisely to an increase of one unit in the size of
a set; and (5) it therefore makes sense to count on from “four” and to say the
next three numbers up in the sequence to figure out the answer (or, in
Alex’s case, to retrieve the sum of four plus four from memory, arrive at
“eight,” and move one number back in the sequence). This complex knowl-
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edge network—called a central conceptual structure for whole number—is
described in greater detail in a subsequent section.

The knowledge that Alex and Sean demonstrate is not limited to the
understandings enumerated above. It includes computational fluency (e.g.,
ease and proficiency in counting) and awareness of the language of quantity
(e.g., that “altogether” indicates the joining of two sets), which were ac-
quired earlier and provided a base on which the children’s current knowl-
edge was constructed. Sean and Alex also demonstrate impressive
metacognitive skills (e.g., an ability to reflect on their own reasoning and to
communicate it clearly in words) that not only provide evidence of number
sense, but also contributed to its development.

Finally, children who demonstrate this set of competencies also show
an ability to answer questions about the joining of two sets when the con-
texts vary considerably, as in the following problems: “If you take four steps
and then you take three more, how far have you gone?” and “If you wait
four hours and then you wait three more, how long have you waited?” In
both of these problems, the quantities are represented in very different ways
(as steps along a path, as positions on a dial), and the language used to
describe the sum (“How far?” “How long?”) differs from that used to describe
the sum of two groups of objects (“How many?”). The ability to apply num-
ber knowledge in a flexible fashion is another hallmark of number sense.

Each of the components of number sense mentioned thus far is de-
scribed in greater detail in a subsequent section of this chapter. For now it is
sufficient to point out that the network of knowledge the components repre-
sent—the central conceptual structure for whole number—has been found
to be central to children’s mathematics learning and achievement in at least
two ways. First, as mentioned above, it enables children to make sense of a
broad range of quantitative problems in a variety of contexts (see Box 6-1
for a discussion of research that supports this claim). Second, it provides the
base—the building block—on which children’s learning of more complex
number concepts, such as those involving double-digit numbers, is built
(see Box 6-2 for research support for this claim). Consequently, this network
of knowledge is an important set of understandings that should be taught. In
choosing number sense as a major learning goal, teachers demonstrate an
intuitive understanding of the essential role of this knowledge network and
the importance of teaching a core set of ideas that lie at the heart of learning
and competency in the discipline (learning principle 2). Having a more
explicit understanding of the factual, procedural, and conceptual under-
standings that are implicated and intertwined in this network will help teachers
realize this goal for more children in their classrooms.

Once children have consolidated the set of understandings just described
for the oral counting sequence from “one” to “ten,” they are ready to make
sense of written numbers (i.e., numerals). Now, when they are exposed to



262 HOW STUDENTS LEARN: MATHEMATICS IN THE CLASSROOM

A central conceptual structure is a powerful organizing knowledge net-
work that is extremely broad in its range of application and that plays a
central role in enabling individuals to master the problems that the domain
presents. The word “central” implies (1) that the structure is vital to suc-
cessful performance on a range of tasks, ones that often transcend indi-
vidual disciplinary boundaries; and (2) that future learning in these tasks is
dependent on the structure, which often forms the initial core around which
all subsequent learning is organized.

To test the first of these claims, Griffin and Case selected two groups
of kindergarten children who were at an age when children typically have
acquired the central conceptual structure for whole number, but had not
yet done so.2  All the children were attending schools in low-income, in-
ner-city communities. In the first part of the kindergarten year, all the chil-
dren were given a battery of developmental tests to assess their central
conceptual understanding of whole number (Number Knowledge test) and
their ability to solve problems in a range of other areas that incorporate
number knowledge, including scientific reasoning (Balance Beam test),
social reasoning (Birthday Party task), moral reasoning (Distributive Jus-
tice task), time telling (Time test), and money knowledge (Money test).
On this test administration, no child in either group passed the Number
Knowledge test, and fewer than 20 percent of the children passed any of
the remaining tests.

One group of children (the treatment group) was exposed to a math-
ematics program called Number Worlds that had been specifically designed
to teach the central conceptual structure for whole number. The second
group of children (a matched control group) received a variety of other
forms of mathematics instruction for the same time period (about 10
weeks). The performance of these two groups on the second administra-

BOX 6-1 The Central Conceptual Structure Hypothesis:
Support for the First Claim

the symbols that correspond to each number name and given opportunities
to connect name to symbol, they will bring all the knowledge of what that
name means with them, and it will accrue to the symbol. They will thus be
able to read and write number symbols with meaning. To build a learning
path that matches children’s observed progression of understanding, this
would be a reasonable next step for teachers to take. Finally, with experi-
ence in using this knowledge network, children eventually become capable



FOSTERING THE DEVELOPMENT OF WHOLE-NUMBER SENSE 263

tion of the same tests at the end of the kindergarten year is presented in
the following table. The treatment group—those exposed to the Number
Worlds curriculum—improved substantially in all test areas, far surpass-
ing the performance of the control group. Because no child in the treat-
ment group had received any training in any of the areas tested in this
battery besides number knowledge, the strong post-training performance
of the treatment group on these tasks can be attributed to the construc-
tion of the central conceptual structure for whole number, as demonstrated
in the children’s (post-training) performance on the Number Knowledge
test. Other factors that might have accounted for these findings, such as
more individual attention and/or instructional time given to the treatment
group, were carefully controlled in this study.

Percentages of Children Passing the Second Administration of

the Number Knowledge Test and Five Numerical Transfer Tests

________________________________________________________________________

Control Group Treatment Group
Testa  (N = 24)  (N = 23)
_________________________________________________________________________
Number Knowledge (5/6) 25 87
Balance Beam (2/2) 42 96
Birthday Party (2/2) 42 96
Distributive Justice (2/2) 37 87
Time Telling (4/5) 21 83
Money Knowledge (4/6) 17 43

 aNumber of items out of total used as the criterion for passing the test are
given in parentheses.

of applying their central conceptual understandings to two distinct quantita-
tive variables (e.g., tens and ones, hours and minutes, dollars and cents) and
of handling two quantitative variables in a coordinated fashion. This ability
permits them to solve problems involving double-digit numbers and place
value, for example, and introducing these concepts at this point in time
(sometime around grade 2) would be a reasonable next step for teachers to
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To test the second centrality claim—that future learning is dependent on the acqui-
sition of the central conceptual structure for whole number—Griffin and Case con-
ducted a follow-up study using the same sample of children as that in Box 6-1.3

Children in both the treatment and control groups had graduated to a variety of
first-grade classrooms in a number of different schools. Those who had remained
in the general geographic area were located 1 year later and given a range of as-
sessments to obtain measures of their mathematics learning and achievement in
grade 1. Their teachers, who were blind to the children’s status in the study, were
also asked to rate each child in their classroom on a number of variables.

The results, displayed in the following table, present an interesting portrait of
the importance of the central conceptual structure (assessed by performance at
the 6-year-old level of the Number Knowledge test) for children’s learning and
achievement in grade 1. Recall that 87 percent of the treatment group had passed
this level of the number knowledge test at the end of kindergarten compared with
25 percent of the control group. As the table indicates, most of the children in the
control group (83 percent) had acquired this knowledge by the end of grade 1, but
it appears to have been too late to enable many of them to master the grade 1
arithmetic tasks that require conceptual understanding (e.g., the Oral Arithmetic
test; the Word Problems; test and teacher ratings of number sense, number mean-
ings, and number use). On all of these measures, children who had acquired the
central conceptual structure before the start of the school year did significantly
better.

 On the more traditional measures of mathematics achievement (e.g., the
Written Arithmetic test and teacher ratings of addition and subtraction) that rely
more on procedural knowledge than conceptual understanding, the performance
of children in the control group was stronger. It was still inferior, however, in abso-
lute terms to the performance of children in the treatment group.

 Possibly the most interesting finding of all is the difference between the two
groups on tests that tap knowledge not typically taught until grade 2 (e.g., the 8-
year-old level of the Number Knowledge test and the 8-year-old level of the Word
Problems test). On both of these tests, a number of children in the treatment group
demonstrated that they had built upon their central conceptual structure for whole
number during their first-grade experience and were beginning to construct the
more elaborate understandings required to mentally solve double-digit arithmetic
problems. Few children in the control group demonstrated this level of learning.

BOX 6-2 The Central Conceptual Structure Hypothesis: Support for
the Second Claim
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Percentages of Children Passing the Number Knowledge

Test and Measures of Arithmetic Learning and

Achievement at the End of Grade 1

Control Treatment
Group Group Significance

Test (N = 12) (N= 11) of differencea

Number Knowledge Test
6-year-old level 83 100 ns
8-year-old level 0 18   a

Oral Arithmetic Test 33 82   a

Written Arithmetic Test 75 91  ns

Word Problems Test
6-year-old level 54 96   a

8-year-old level 13 46   a

Teacher Rating
Number sense 24 100   a

Number meaning 42 88   a

Number use 42 88   a

Addition 66 100  ns
Subtraction 66 100  ns

ns= not significant;  a = significant at the .01 level or better.
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take in building learning paths that are finely attuned to children’s observed
development of number knowledge.

In this brief example, several developmental principles that should be
considered in building learning paths and networks of knowledge (learning
principle 2) for the domain of whole numbers have come to light. They can
be summarized as follows:

• Build upon children’s current knowledge. This developmental prin-
ciple is so important that it was selected as the basis for one of the three
primary learning principles (principle 1) of How People Learn.

• Follow the natural developmental progression when selecting new
knowledge to be taught. By selecting learning objectives that are a natural
next step for children (as documented in cognitive developmental research
and described in subsequent sections of this chapter), the teacher will be
creating a learning path that is developmentally appropriate for children,
one that fits the progression of understanding as identified by researchers.
This in turn will make it easier for children to construct the knowledge
network that is expected for their age level and, subsequently, to construct
the higher-level knowledge networks that are typically built upon this base.

• Make sure children consolidate one level of understanding before
moving on to the next. For example, give them many opportunities to solve
oral problems with real quantities before expecting them to use formal sym-
bols.

• Give children many opportunities to use number concepts in a broad
range of contexts and to learn the language that is used in these contexts to
describe quantity.

I turn now to question 1 and, in describing the knowledge children
typically have available at several successive age levels, paint a portrait of
the knowledge construction process uncovered by research—the step-by-
step manner in which children construct knowledge of whole numbers
between the ages of 4 and 8 and the ways individual children navigate this
process as a result of their individual talent and experience. Although this is
the subject matter of cognitive developmental psychology, it is highly rel-
evant to teachers of young children who want to implement the develop-
mental principles just described in their classrooms. Because young chil-
dren do not reflect on their own thinking very often or very readily and
because they are not skilled in explaining their reasoning, it is difficult for a
teacher of young children to obtain a picture of the knowledge and thought
processes each child has available to build upon. The results of cognitive
developmental research and the tools that researchers use to elicit children’s
understandings can thus supplement teachers’ own knowledge and exper-
tise in important ways, and help teachers create learner-centered class-
rooms that build effectively on students’ current knowledge. Likewise, hav-
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ing a rich picture of the step-by step manner in which children typically
construct knowledge of whole numbers can help teachers create knowl-
edge-centered classrooms and learning pathways that fit children’s sponta-
neous development.

BUILDING ON CHILDREN’S CURRENT
UNDERSTANDINGS

What number knowledge do children have when they start preschool
around the age of 4? As every preschool teacher knows, the answer varies
widely from one child to the next. Although this variation does not disap-
pear as children progress through the primary grades, teachers are still re-
sponsible for teaching a whole classroom of children, as well as every child
within it, and for setting learning objectives for their grade level. It can be a
great help to teachers, therefore, to have some idea of the range of under-
standings they can expect for children at their grade level and, equally im-
portant, to be aware of the mistakes, misunderstandings, and partial under-
standings that are also typical for children at this age level.

To obtain a portrait of these age-level understandings, we can consider
the knowledge children typically demonstrate at each age level between
ages 4 and 8 when asked the series of oral questions provided on the Num-
ber Knowledge test (see Box 6-3). The test is included here for discussion
purposes, but teachers who wish to use it to determine their student’s cur-
rent level of understanding can do so.

Before we start, a few features of the Number Knowledge test deserve
mention. First, because this instrument has been called a test in the develop-
mental research literature, the name has been preserved in this chapter.
However, this instrument differs from school tests in many ways. It is admin-
istered individually, and the questions are presented orally. Although right
and wrong answers are noted, children’s reasoning is equally important, and
prompts to elicit this reasoning (e.g., How do you know? How did you
figure that out?) are always provided on a subset of items on the test, espe-
cially when children’s thinking and/or strategy use is not obvious when they
are solving the problems posed. For these reasons, the “test” is better thought
of as a tool or as a set of questions teachers can use to elicit children’s
conceptions about number and quantity and to gain a better understanding
of the strategies children have available to solve number problems. When
used at the beginning (and end) of the school year, it provides a good
picture of children’s entering (and exit) knowledge. It also provides a model
for the ongoing, formative assessments that are conducted throughout the
school year in assessment-centered classrooms.

 Second, as shown in Box 6-3, the test is divided into three levels, with
a preliminary (warm-up) question. The numbers associated with each level
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BOX 6-3 Number Knowledge Test

Preliminary

Let’s see if you can count from 1 to 10. Go ahead.

Level 0 (4-year-old level): Go to Level 1 if 3 or more correct.

 1. Can you count these chips and tell me how many there are? (Place 3
counting  chips in front of child in a row.)

2a. (Show stacks of chips, 5 vs. 2, same color.) Which pile has more?
2b. (Show stacks of chips, 3 vs. 7, same color.) Which pile has more?

3a. This time I’m going to ask you which pile has less.
(Show stacks of chips, 2 vs. 6, same color.) Which pile has less?

3b. (Show stacks of chips, 8 vs. 3, same color.) Which pile has less?

4. I’m going to show you some counting chips (Show a line of 3 red
and 4 yellow chips in a row, as follows: R Y R Y R Y Y). Count just the
yellow chips and tell me how many there are.

5. (Pick up all chips from the previous question.) Here are some more
counting chips (show mixed array [not in a row] of 7 yellow and 8 red
chips.)  Count just the red chips and tell me how many there are.

Level 1 (6-year-old level): Go to Level 2 if 5 or more correct.

1. If you had 4 chocolates and someone gave you 3 more, how many
 chocolates  would you have altogether?

2. What number comes right after 7?

3. What number comes two numbers after 7?

4a. Which is bigger: 5 or 4?
4b. Which is bigger: 7 or 9?

5a. This time, I’m going to ask you about smaller numbers.
Which is smaller: 8 or 6?

5b. Which is smaller: 5 or 7?

6a. Which number is closer to 5: 6 or 2? (Show visual array
after asking the question.)
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 6b. Which number is closer to 7: 4 or 9? (Show visual array after
asking the question.)

7. How much is 2 + 4? (OK to use fingers for counting.)

8. How much is 8 take away 6? (OK to use fingers for counting.)

9a. (Show visual array 8 5 2 6. Ask child to point to and name each
numeral.) When you are counting, which of these numbers do
you say first?

 9b. When you are counting, which of these numbers do you say
last?

Level 2 (8-year-old level): Go to Level 3 if 5 or more

correct.

1. What number comes 5 numbers after 49?

2. What number comes 4 numbers before 60?

3a. Which is bigger: 69 or 71?
3b. Which is bigger: 32 or 28?

4a. This time I’m going to ask you about smaller numbers.
Which is smaller: 27 or 32?

4b. Which is smaller: 51 or 39?

5a. Which number is closer to 21: 25 or 18? (Show visual
array after asking the question.)

5b. Which number is closer to 28: 31 or 24? (Show visual
array after asking the question.)

6. How many numbers are there in between 2 and 6?
(Accept either 3 or 4.)

7. How many numbers are there in between 7 and 9?
(Accept either 1 or 2.)

8. (Show visual array 12 54.) How much is 12 + 54?

9. (Show visual array 47 21.) How much is 47 take away 21?
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(0, 1, 2) are drawn from the cognitive developmental tradition and are meant
to suggest that the knowledge demonstrated at Level 0 is foundational for
the knowledge demonstrated at Level 1, which represents a new, higher-
order knowledge structure and a major reorganization of children’s thought.
The knowledge demonstrated at Level 2 represents an even more sophisti-
cated version of this knowledge structure. The ages associated with each
level of the test represent the midpoint in the 2-year age period during
which this knowledge is typically constructed and demonstrated. Thus, the
4-year-old level captures children’s thinking between the ages of 3 and 5
years, and the 6-year-old level captures children’s thinking between the ages
of 5 and 7 years. Finally, the age norms given in the test are the age ranges
within which children in developed societies (drawn primarily from middle-
income homes) typically pass that level of the test. But even when the norm
is accurate for a group of children, it is important to remember that the
knowledge possessed by individual children can differ by as much as 2
years (e.g., from knowledge typical of a 3- and a 5-year-old among the
group at age 4). The test thus provides a set of broad developmental mile-
stones for the majority of U.S. children, although the extent to which these
levels hold true for children from vastly different sociocultural groups re-
mains to be determined. (Directions for administering and scoring the test
are provided in Box 6-4.)

Understandings of 4-Year-Olds

By the age of 4 to 5, most children can accurately count a set of three
chips that are placed in front of them (Level 0, #1) and tell how many there
are. They typically do so by touching the chips in a systematic fashion,
usually proceeding from left to right; by saying “one,” “two,” “three” as they
do so; and by giving the last number said, “three,” as the answer. Fewer
children (but still the majority) can also solve the more challenging counting
problems at this level. They can count a set of four yellow chips that are
intermixed with three red chips in a row (Level 0, #4) by counting just the
yellow chips in the row or by physically moving the yellow chips into a
separate space to make counting easier, and tell you how many there are.
They can also count a set of eight red chips that are intermixed with seven
white chips in a randomly distributed array (Level 0, #5), using one of the
strategies just mentioned. Children who are successful with these items have
learned to isolate the partial set to be counted, either mentally or physically,
and to count items in this set in a systematic fashion, making sure that they
know which chip they counted first and that they touch each chip only once
when counting.

Children who are unsuccessful often fail to count systematically. They
say the counting words and touch the chips, but these strategies are not
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Administration: The Number Knowledge test is an oral test. It is administered
individually, and it requires an oral response. Paper and pencil are not permitted.
Use of a follow-up question — “How did you figure that out?”— for Questions 1,
3, and 7 at Level 1 and Questions 1, 2, and 8 at Level 2 provides additional insight
into children’s reasoning and strategy use.

Scoring: One point is assigned for each item passed at Levels 0, 1, and 2. For all
two-part items, both (a) and (b) must be passed to earn a point.

Props Needed: For Level 0: 12 red and 8 yellow counting chips, at least 1/8” thick
(other contrasting colors can be substituted). For Levels 1 and 2: visual displays
(see samples below). Each image should be at least twice the size of the samples
shown here.

BOX 6-4 Directions for Administering and Scoring the Number
Knowledge Test
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aligned, so they say more words than chips touched or skip some chips
while counting, or (particularly on item #5) forget which chip they started
with and count one or more chips twice. Children who make these errors
are demonstrating some knowledge of counting. They are typically able to
say the string of counting words in the correct sequence, and they know
what must be done to figure out the answer to the question (e.g., touch the
objects present while saying the words). What they do not yet understand is
that the chips must be touched in a certain order and manner to coincide
precisely with their recitation of the counting words. An even less sophisti-
cated response is given by children who have not yet learned to say the
counting words in the correct sequence and who may count the four red
chips in item #4 by saying, “one,” “two,” “five,” seven.”

By the age of 4, most children can also compare two stacks of chips that
differ in height in obvious, perceptually salient ways (Level 0, #2 and #3)
and tell which pile has more or less. Children who can do this can solve the
same problem when the question is phrased “Which pile is bigger (or
smaller)?” and can solve similar problems involving comparisons of length
(when the chips are aligned along a table) and of weight (when the chips
are placed on a balance scale), provided the differences between the sets
are visually obvious. Children who fail these items often look genuinely
puzzled by the question, and either sit quietly waiting for further instruction
or start to play with the chips by taking the stacks apart and moving the
chips about. It appears that the words “more–less” (or “bigger–smaller,”
“longer–shorter,” “heavier–lighter”) and the comparison process that under-
lies them have no meaning for these children, and they are uncertain how to
respond.

Although most children of this age can handle these quantity compari-
sons easily, they fail to achieve more than a chance rate of success when the
differences between the sets are not visually obvious, and counting is re-
quired to determine which set has more or less. Although 4-year-olds have
acquired some fairly sophisticated counting skills (as suggested above), they
tend not to use counting to make quantity judgments, instead relying almost
exclusively on visual cues in answering this sort of question.

If 4-year-olds can do these things, what might that suggest about what
they know? Using this test and other performance assessments, researchers
have constructed hypotheses about children’s knowledge, which can be
summarized as follows. By the age of 4, most children have constructed an
initial counting schema (i.e., a well-organized knowledge network) that en-
ables them to count verbally from one to five, use the one-to-one correspon-
dence rule, and use the cardinality rule.4  By the same age, most have also
constructed an initial quantity schema that gives them an intuitive under-
standing of relative amount (they can compare two groups of objects that
differ in size and tell which has a lot or a little) and of the transformations
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that change this amount (they know that one group will get bigger or smaller
if objects are added to it or taken away). Most preschoolers can also use
words to talk about these quantity relations and transformations.5  As sug-
gested earlier, however, most preschoolers do not use these schemas in a
coordinated or integrated fashion.6 It is as if they were stored in separate
files in children’s minds.

Understandings of 5-Year-Olds

A major change takes place for children when they can begin to solve
problems involving small (single-digit) numbers and quantities without hav-
ing real objects available to count. For the typical child this happens some
time during the kindergarten year, between ages 5 and 6. With this change,
children behave as if they are using a “mental counting line” inside their
heads and/or their fingers to keep track of how many items they have counted.
When asked how many chocolates they would have if they had four and
someone gave them three more (Level 1, #1), the majority of children aged
5 to 6 can figure out the answer. The most advanced children will say that
they just knew the answer was seven because four and three makes seven.
More typically, children in this age range will use their fingers and one of
three counting strategies to solve the problem. They may use the count-on
strategy (the most sophisticated counting strategy) by starting their count at
“four,” often holding up four fingers to represent the first set, and then
counting on “five,” “six,” “seven,” often putting up three additional fingers to
represent the second set. Alternatively, they may use the less sophisticated
count-up-from-one strategy by starting their count at “one,” putting up four
fingers in sequence as they count up to four (to mark off the first set), and
then continuing to count up to seven as they raise three additional fingers
(to mark off the second set). Children who are unsure of this strategy will
use it to put up seven fingers, counting as they do so, and will then use their
noses or nods of their heads to count the fingers they have raised and thus
determine that the answer to the question is seven.

Although it may take children 1 or 2 years to move from the least to the
most sophisticated of these strategies, children using these approaches are
in all cases demonstrating their awareness that the counting numbers refer
to real-world quantities and can be used, in the absence of countable ob-
jects, to solve simple addition problems involving the joining of two sets.
Children who respond to the same question by saying “I don’t know” or by
taking a wild guess and saying “one hundred” appear to lack this awareness.
In between these two extremes are children who make a common error and
say the answer is “five,” thus demonstrating some understanding of addition
(i.e., that the answer must be larger than four) but an incomplete under-
standing of how to use counting numbers to find the answer.
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Kindergarten children use the same range of strategies to figure out
what number comes two numbers after seven (Level 1, #3). Some use the
count-on strategy to solve this problem and say, “seven [pause], eight, nine.
The answer is nine.” Others count up from one to get the same answer. Two
common errors that children make on this problem shed light on what suc-
cessful children appear to know about the number sequence. The first error
involves starting at seven, saying two counting words—“seven, eight”—and
explaining that eight is the answer. The second error is to say that the an-
swer is “eight and nine” and to repeat this answer when prompted with the
question, “Well, which is it—eight or nine?” Both of these answers show an
understanding of the order of counting words but a weak (or incomplete)
understanding of the position of each word in the number sequence and
what position entails in terms of quantity. Finally, children who say “I don’t
know” to this question appear to lack either sufficient knowledge of the
counting sequence or sufficient understanding of the term “after” to even
attempt the problem.

At this age level, children are also able to tell which of two single-digit
numbers is bigger or smaller (Level 1, #4 and #5). This is a large leap from
the previous (4-year-old) level, at which children could compare quantities
that were physically present as long as the differences between them were
visible to the naked eye. This new competence implies the presence of a
sophisticated set of understandings. Children who are successful with these
items appear to know (1) that numbers indicate quantity and therefore (2)
that numbers themselves have magnitude, (3) that the word “bigger” or
“more” is sensible in this context, (4) that the numbers seven and nine
occupy fixed positions in the counting sequence, (5) that seven comes be-
fore nine when one is counting up, (6) that numbers that come later in the
sequence—are higher up—indicate larger quantities, and (7) that nine is
therefore bigger (or more) than seven. Children who lack these understand-
ings typically guess hesitantly. (Note that because children can get the right
answer to these questions 50 percent of the time by guessing, they must
pass both parts of each question to receive credit for these items on the test.)

Understandings of 6-Year-Olds

The last three items on Level 1 of the test are typically not passed until
children are 6 years old, in first grade, and have had the benefit of some
formal schooling. The addition problem “How much is two plus four?” and
the subtraction problem “How much is eight take away six?” are particularly
challenging because they are stated formally, in a decontextualized fashion,
and because the quantity to be added or subtracted is larger than three,
making it difficult for children to easily count up or back a few numbers to
figure out the answer. The most sophisticated response children provide to
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the addition question is to count on from the largest addend (intuitively
using the commutative principle) and to say “four [pause], five, six.” Al-
though many children use this strategy, many others start with the first
addend in the stated problem (two); they then have the cumbersome job of
counting on four more, making sure they count correctly at the same time
they are keeping track of how many they have counted. It is not surprising
that this strategy results in more errors in counting than does the first strat-
egy.

Although some children make wild guesses in response to these ques-
tions, two other examples of a partial understanding are provided more
frequently when children say, after pausing to think, that the answer is “five.”
Although five appears to be a favorite number for many children, regardless
of the context, it is also a reasonable answer for both of these questions. If it
reflects an awareness that the answer to the addition problem must be big-
ger than four (the largest addend), and the answer to the subtraction prob-
lem must be smaller than eight (the first subtrahend), it suggests a partial
understanding of addition and subtraction.

The final item at Level 1 (#9) presents children with a conflicting cue
(i.e., four numerals presented in a random order—8, 5, 6, 2) and gives them
a chance to show just how solid their understanding of the counting se-
quence is: “When you’re counting, which of these numbers do you say first
(and last)?” Children can easily solve this problem if their experience with
counting is extensive and their knowledge solid. If this is not the case, they
are easily confused and give the first (or last) numeral listed in the display as
their answer. As with all other items at this level of the test, the majority
(about 60 percent) of children in developed societies acquire the knowledge
needed for success sometime between the ages of 5 and 7.

Again we can ask what knowledge undergirds these performances. Schol-
ars hypothesize that, around the age of 5 to 6, as children’s knowledge of
counting and quantity becomes more elaborate and differentiated it also
gradually becomes more integrated, eventually merging in a single knowl-
edge network termed here as a central conceptual structure for whole num-
ber, or a mental counting line structure.7  This structure is illustrated in Fig-
ure 6-1. The figure can be thought of as a blueprint showing the important
pieces of knowledge children have acquired (depicted by words or pictures
in the figure) and the ways these pieces of knowledge are interrelated (de-
picted by arrows in the figure).

The top row of the figure illustrates children’s knowledge of the count-
ing words and suggests that they can not only say those words in sequence,
but also understand the position of each word in the sequence and tell what
number comes next, after, or before any number from one to ten. The sec-
ond row shows that children know they touch each object once and only
once when counting. The third row shows that children know the precise
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FIGURE 6-1 Mental counting line structure—a blueprint showing the important pieces of
knowledge children have acquired (words or pictures) and the ways these pieces are interrelated
(arrows).

finger patterns associated with each counting word; as indicated by the
horizontal and vertical arrows that connect finger displays to each other and
to the counting words, they also know that the finger display contains one
more finger each time they count up by one and contains one less finger
each time they count down by one. The fourth row suggests that children
have acquired similar understandings with respect to objects (and other real-
world quantities). The fifth row is connected to all the others with dotted
lines to show that children acquire knowledge of the numerals that are
associated with each counting word somewhat later, and this knowledge is
not a vital component of the central conceptual structure. What is vital,
however, are the brackets that contain the first four rows and connect the
knowledge indicated within them (i.e., knowledge of counting) to several
words used to make quantity judgments. These connectors show that chil-
dren at this age can use their knowledge of counting to make precise judg-
ments about relative amount.

With this higher-order knowledge structure, children come to realize
that a question about addition or subtraction can be answered, in the ab-
sence of any concrete set of objects, simply by counting forward or back-
ward along the counting string. They also come to realize that a simple
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verbal statement about a transformation, such as “I have four things, and
then I get three more,” has an automatic entailment with regard to quantity.
One does not even need to see the objects involved or know anything else
about them. These simple understandings actually mark a major revolution
in children’s understanding, which changes the world of formal mathemat-
ics from something that can occur only “out there” to something that can
occur inside their own heads and under their own control. As this change
takes place, children begin to use their counting skills in a wide range of
other contexts. In effect, children realize that counting is something one can
do to determine the relative value of two objects on a wide variety of dimen-
sions (e.g., width, height, weight, musical tonality).8

Around age 6 to 7, supported by their entry into formal schooling, chil-
dren typically learn the written numerals (though this is taught to some
children earlier). When this new understanding is linked to their central
conceptual understanding of number, children understand that the numerals
are symbols for number words, both as ordered “counting tags” and as
indicators of set size (i.e., numerical cardinality).

Understandings of 7-Year-Olds

Around the age of 7 to 8, in grade 2, children are able to solve the same
sorts of problems they could solve previously for single-digit numbers, but
for double-digits numbers. When asked what number comes five numbers
after forty-nine (Level 2, #1) or four numbers before sixty (Level 2, #2), the
majority of second graders can figure out the answer. They do so by count-
ing up from forty-nine (or down from sixty), often subvocally and, less
frequently than at the previous stage, using their fingers to keep track of
how many they have counted up (or down). When children make errors on
these problems, they demonstrate the same sorts of partial understandings
that were described earlier. That is, they may show a strong partial under-
standing of double-digit numbers by making a counting error (e.g., counting
the number from which they start as the first number added or subtracted),
or a weak understanding by saying, “I don’t know. That’s a big number. I
haven’t learned them yet.” Between these two extremes are children who
know intuitively that the answer to each problem must be in the fifties but
are unsure how to count up or down.

At this age level, children can also tell which of two double-digit num-
bers is bigger or smaller (Level 2, #3 and #4). To do so, they must recognize
that numbers in the tens place of each problem (e.g., sixty-nine versus sev-
enty-one) have a much greater value than numbers in the ones place, and
thus outweigh the value of even big numbers such as nine that occur in the
units position. In short, children who succeed on these items recognize that
any number in the seventies is automatically bigger than any number in the
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sixties “because you have to go through all the numbers in the sixties before
you even hit seventy.” A common error children make—which reveals an
absence of this awareness—is to choose consistently on the basis of the
value of the unit digits and to say, for example, that sixty-nine is bigger than
seventy-one because nine is larger than one.

Finally, typically toward the end of this age period, children are able to
figure out how many whole numbers are in between two and six (Level 2,
#7) and in between seven and nine (Level 2, #8). These are complex single-
digit problems that require the use of two mental counting lines, one with
the numbers involved in the problem and one with the numbers involved in
the solution. Children who are successful with the first item often start the
solution process by looking fixedly ahead and saying “two” [pause] “six,” as
if they were looking at an imaginary counting line and marking the numbers
two and six on this line. They then proceed to count the numbers in be-
tween by nodding their heads; saying “three,” “four,” “five” (sometimes us-
ing their fingers to keep track of the second number line, in which “three” is
one, “four” is two, and “five” is three); and providing “three” as the answer.
This behavior suggests they are using one mental counting line as an opera-
tor to count the numbers on a second mental number line that shows the
beginning and end points of the count. By contrast, children who are unsuc-
cessful with this item often give “five” as the answer and explain this answer
by saying that five is in between two and six. Although this answer demon-
strates an understanding of the order of numbers in the counting sequence,
it completely ignores the part of the question that asks, “How many num-
bers are there in between?” Other children look stunned when this question
is posed, as if it is not a meaningful thing to ask, and respond “I don’t
know,” suggesting that they have not yet come to understand that numbers
have a fixed position in the counting sequence and can themselves be counted.

Understandings of 8-Year-Olds

The last two items at Level 2 are more complex than the previous items,
and they are frequently not solved until children are 8 years old. Children
succeed on the problem “How much is 12 plus 54?” most easily by reducing
one of these numbers to a benchmark value, carrying the amount that was
taken away in their heads, adding the new values, and then adding on the
amount that was carried (e.g., “ten and fifty-four is sixty-four; add two; the
answer is sixty-six”). Use of this strategy implies a good understanding of
the additive composition of double-digit numbers and of the value of using
benchmark numbers to make addition and subtraction easier.

Other children solve these problems more laboriously, with less sophis-
ticated strategies. Some count on from fifty-four by ones until they have
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marked twelve fingers, essentially ignoring the base-ten value of these num-
bers and treating them as units. Others try to line the numbers up in their
heads into the typical vertical format used on worksheets in the classroom.
They then add the numbers in the ones column—“two and four is six”—and
the numbers in the tens column—“five and one is six”—and, with much
mental effort, say that the answer is sixty-six. Children using this solution
strategy are essentially performing two single-digit addition operations in
succession and are not demonstrating a good understanding of the base-ten
features of double-digit numbers. As with all the other test problems, there
are always some children who take a wild guess and produce an answer that
is not even in the ballpark or who look puzzled and say, more or less
forlornly, “I don’t know. I haven’t learned that yet.”

Again we can ask what knowledge underlies these performances. Re-
searchers have suggested that, around the age of 7 to 8 years, children’s
central conceptual understandings become more elaborate and more differ-
entiated, permitting them to represent two distinct quantitative dimensions,
such as tens and ones, in a coordinated fashion. With this new structure,
called a bidimensional central conceptual structure for number, children are
able to understand place value (e.g., represent the tens dimension and the
ones dimension in the base-ten number system and work with these dimen-
sions in a coordinated fashion). They are also able to solve problems involv-
ing two quantitative dimensions across multiple contexts, including time
(hours and minutes), money (dollars and cents), and math class (tens and
ones).9

ACKNOWLEDGING TEACHERS’ CONCEPTIONS
AND PARTIAL UNDERSTANDINGS

As illustrated in the foregoing discussion, the questions included on the
Number Knowledge test can provide a rich picture of the number under-
standings, partial understandings, and problem-solving strategies that chil-
dren in several age groups bring to instruction.

The test can serve another function as well, however, which is worth
discussing in the present context: it can provide an opportunity for teachers
to examine their own mathematical knowledge and to consider whether any
of the partial understandings children demonstrate are ones they share as
well. My own understanding of number has grown considerably over the
past several years as a result of using this test with hundreds of children,
listening to what they say, and examining how their explanations and un-
derstandings change as they grow older. Three insights in particular have
influenced my teaching.
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Insight #1: Math Is Not About Numbers, but About
Quantity

It is easy to endorse the myth that math is about numbers because
numbers, after all, are everywhere in math. What my work with children has
taught me is that math is about quantity, and numbers express those quan-
tities. As the age-level descriptions of children’s understandings suggest,
numbers acquire meaning for children when they recognize that each num-
ber refers to a particular quantity (which may be represented in a variety of
different ways) and when they realize that numbers provide a means of
describing quantity and quantity transformations more precisely than is pos-
sible using everyday language such as “lots,” “little,” or “more.” This realiza-
tion—that numbers are tools that can be used to describe, predict, and ex-
plain real-world quantities and quantity transactions—gives children a
tremendous boost in mastering and using the number system. To help chil-
dren construct this understanding, therefore, it is crucial to introduce num-
bers to children in the context of the quantities (e.g., objects, pictures of
objects) and quantity representations (e.g., dot set patterns, number lines,
thermometers, bar graphs, dials) that will give these numbers meaning as
quantities.

Insight #2: Counting Words Is the Crucial Link
Between the World of Quantity and the World of
Formal Symbols

Numbers are expressed in our culture in two quite different ways: orally,
as a set of counting words, and graphically, as a set of formal symbols.
Because children start using the counting words so early—learning to say
“one–two–three” almost as soon as they learn to talk—it may be tempting to
think that they should abandon this early form of expression when they start
their formal schooling and learn to use the graphic symbol system instead.
But children have spent most of their preschool years using the counting
words in the context of their real-world exploration and ever so slowly
building up a network of meaning for each word. Why should they be
deprived of this rich conceptual network when they start their school-based
math instruction and be required, instead, to deal with a set of symbols that
have no inherent meaning? Mathematics instruction that takes advantage of
this prior knowledge and experience—rather than denying it or presenting
math as distinct from these everyday experiences—is bound to be more
accessible to children.

In my own work, I have found that the key to helping children acquire
meanings for symbols is providing opportunities for them to connect the
symbol system to the (more familiar) counting words. This is best accom-
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plished when children have previously acquired a solid set of connections
between the counting words themselves and the quantities to which they
refer. Many third graders are still constructing this latter understanding (e.g.,
acquiring an awareness of the links between double-digit counting numbers
and the quantities to which they refer). Thus, to enable children to use their
current understandings to build new ones, it is crucial that they have ample
opportunities to use the oral language system to make sense of quantitative
problems and that they be introduced to the graphic equivalents of that
system in this familiar context.

Insight #3: Acquiring an Understanding of Number Is a
Lengthy, Step-by-Step Process

I used to think (or at least I liked to believe) that if I designed an
especially elegant lesson that made the concept I was attempting to teach
transparent for children, I could produce an “aha” experience and enable
the children to grasp a connection that was previously unavailable to them.
I now realize that this goal (or wish) is not only unrealistic, but also unob-
tainable if the concept to be learned is not within reach of the child’s current
level of understanding. As the earlier age-level descriptions of children’s
understanding suggest, the acquisition of number knowledge is, by its very
nature, a step-by-step process, with each new understanding building sys-
tematically and incrementally on previous understandings. Although I still
believe in the value of carefully designed, elegant lessons, my goals, while
still ambitious, are more limited. Now, I hope that a lesson or series of
lessons will enable a child to move up one level at a time in his or her
understanding, to deepen and consolidate each new understanding before
moving on to the next, and to gradually construct a set of understandings
that are more sophisticated and “higher-level” than the ones available at the
start. I now recognize that such a process takes time and that each child may
move through the process at his or her own pace.

REVISITING QUESTION 2: DEFINING THE
KNOWLEDGE THAT SHOULD BE TAUGHT

Now that we have a better idea of the knowledge children have avail-
able to work with at several age levels and the manner in which this knowl-
edge is constructed, it is possible to paint a more specific portrait of the
knowledge that should be taught in school, at each grade level from pre-
school through second grade, to ensure that each child acquires a well-
developed whole-number sense. As suggested previously, the knowledge
taught to each child should be based, at least in part, on his or her existing
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understandings (Principle 1). However, because teachers are required to
teach whole classrooms of children (as well as individuals), they need a set
of general learning objectives for each grade level that will be appropriate
for the range of children involved. Two sets of objectives are paramount for
this purpose. The first is to ensure that all children in the class attain the
developmental milestones—the central conceptual structures for whole num-
ber—described earlier; the second is to ensure that all children become
familiar with the major ways in which number and quantity are represented
and talked about so they can recognize and make sense of number prob-
lems they encounter across contexts.

The framework presented in the previous section leads to a clear set of
learning goals for each grade level from prekindergarten through grade 2
that are within reach of the majority of children at that level and that teach-
ers can use to “teach” the developmental milestones (i.e., to ensure that
children who have not yet acquired these central conceptual understandings
have an opportunity to do so). Using this framework, it can be suggested
that a major goal for the preschool year is to ensure that children acquire a
well-developed counting schema and a well-developed quantity schema. A
major goal for the kindergarten year is to ensure that children acquire a well-
consolidated central conceptual structure for single-digit numbers. A major
goal for first grade is to help children link this structure to the formal symbol
system and to construct the more elaborated knowledge network this en-
tails. Finally, a major goal for second grade is to help children acquire the
bidimensional central conceptual structure for double-digit numbers that
underlies a solid understanding of the base-ten system.

These grade-level goals (see Box 6-5) not only specify knowledge net-
works to be taught at specific grade levels to foster the development of
whole-number sense, but also form a “number sense” learning pathway—a
sequence of learning objectives teachers can use to individualize instruction
for children who are progressing at a rate that is faster or slower than that of
the rest of the class. The second body of knowledge to be taught—knowl-
edge of the major ways number and quantity are represented and talked
about—can be defined most clearly in the context of the tools developed to
teach it, as discussed in the following section.

HOW CAN THIS KNOWLEDGE BE TAUGHT?:
THE CASE OF NUMBER WORLDS

During the past two decades, several innovative programs and approaches
to mathematics teaching have been developed to teach whole-number con-
cepts and to put the principles of How People Learn into curricular action.10

The program described here—Number Worlds—was designed specifically
to teach the knowledge described above. It is also the one with which I am
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most familiar. As codeveloper of this program, I was involved in its incep-
tion in 1988 under the name Rightstart. In the ensuing years, I have contin-
ued to participate in the program’s development, revising it annually to
achieve a better fit with teachers’ needs and learning goals, conducting pro-
gram evaluations to assess its effects on children’s learning and achieve-
ment, and ultimately producing the expanded set of prekindergarten–grade
2 programs now called Number Worlds.11  Like the other programs and ap-
proaches referred to above, Number Worlds was designed specifically to (1)
build on children’s existing understandings (learning principle 1), (2) help
children construct new knowledge, both factual and conceptual, that is or-
ganized so as to facilitate retrieval and application (learning principle 2),
and (3) require and teach metacognitive strategies (learning principle 3).
Like each of the other programs and approaches referred to above, Number
Worlds provides a distinctive way of thinking about mathematics and math-
ematics teaching.

To maximize opportunities for all children to achieve the knowledge
objectives of the Number Worlds program, a set of design principles drawn
from the How People Learn research base was adopted and used to create
each of the more than 200 activities included in the program. The principles
that are most relevant to the present discussion are listed below. In the
ensuing discussion, each design principle is described more fully and illus-
trated with one or more activities from the Number Worlds program:

1. Activities should expose children to the major ways number is repre-
sented and talked about in developed societies.

2. Activities should provide opportunities to link the “world of quantity”
with the “world of counting numbers” and the “world of formal symbols.”

3. Activities should provide visual and spatial analogs of number repre-
sentations that children can actively explore in a hands-on fashion.

4. Activities should be affectively engaging and capture children’s imagi-
nation so knowledge constructed is embedded not only in their minds, but
also in their hopes, fears, and passions.

5. Activities should provide opportunities for children to acquire com-
putational fluency as well as conceptual understanding.

6. Activities should encourage or require the use of metacognitive pro-
cesses (e.g., problem solving, communication, reasoning) that will facilitate
knowledge construction.

Design Principle 1: Exposing Children to Major Forms
of Number Representation

Number is represented in our culture in five major ways: through ob-
jects, dot set patterns, segments on a line, segments on a scale (or bar graph),
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and segments or points on a dial. Children who are familiar with these forms
of representation and the language used to talk about number in these con-
texts have a much easier time making sense of the number problems they
encounter inside and outside of school. The Number Worlds program pro-
vides one example of how these forms of representation can be taught. In so
doing, it illustrates what a knowledge-centered classroom might look like in
the area of elementary mathematics.

At each grade level in this program, children explore five different lands.
Learning activities developed for each land share a particular form of num-
ber representation while simultaneously addressing specific knowledge goals
(i.e., the developmental milestones) for each grade level. The five forms of
representation and the lands in which they appear are illustrated in Figure
6-2. As the figure suggests, the first land to which children are exposed is
Object Land, where numbers are represented by the bundling of several

BOX 6-5 Learning Goals for Prekindergarten Through Grade 2

Knowledge Networks Examples of Specific
That All Children Competencies within

Grade Level Should Acquire Each Networka

Prekindergarten  Initial counting schema Can count verbally from one
to five (or ten).

Can use the one-to one
correspondence rule.

Knows the cardinal value of
each number.

Initial quantity schema Understands relative amount
(a lot–a little).

Knows that an amount gets
bigger if objects added and
smaller if objects taken away.

Kindergarten Central conceptual Knows the relative value of
structure for numbers.
single-digit numbers Knows that set size increases

by one with each counting
number up in the sequence.
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Can use the counting numbers
alone to solve addition and
subtraction problems.

Grade 1 Central conceptual Knows the symbols
structure linked to associated with each
formal symbol system number word and the names

and symbols for addition,
subtraction, and equality.

Grade 2 Central conceptual Understands place value
structure for (e.g., a two in the ones
double-digit numbers place means two and a two

in the tens place means 20);
can solve double-digit
addition and subtraction
problems mentally.

a Additional, more concrete, examples of the sorts of problems children can solve when
they have acquired each knowledge network can be found in the Number Knowledge Test
(Box 6-1). See the 4-year-old level items for the prekindergarten network; the 6-year-old level
items (1 through 6) for the kindergarten network; the remaining 6-year-old level items for the
grade 1 network; and the 8-year-old level items for the grade 2 network.

objects, such as pennies or fingers, into groups. This is the first way in which
numbers were represented historically and the first that children learn natu-
rally.12  In Object Land, children first work with real objects (e.g., “How
many crackers will you have left after you eat one? After you eat one more?”)
and then move on to working with pictures of objects (e.g., “Are there
enough hats so that each clown will have one? How many more do you
need? How do you know?”).

The second land to which children are introduced is Picture Land, where
numbers are represented as stylized, semiabstract dot set patterns that are
equivalent to mathematical sets. These patterns provide a link between the
world of movable objects and the world of abstract symbols. Unlike the real
objects they represent, dot set pictures cannot be placed physically in one-
to-one correspondence for easier comparison. Instead, a child must make a
mental correspondence between two sets, for example by noticing that the
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pattern for five is the same as that for four, except that the five pattern has
one extra dot in the center. As children engage in Picture Land activities
(e.g., by playing an assortment of card and dice games similar in format to
War, Fish, and Concentration), they gradually come to think of these pat-
terns as forming the same sort of ordered series as do the number words
themselves. Numerals, another way of representing numbers, are also part
of Picture Land, and are used extensively in the activity props that are pro-
vided at all grade levels and, by the children themselves, in the upper levels
of the program. Tally marks are used as well in this land to record and
compare quantities.

A third way to represent numbers is as segments along a line—for ex-
ample, the lines that are found on board games such as Chutes and Ladders.
The language that is used for numbers in this context is the language of
distance. In Line Land, children come to understand (by playing games on a
Human Game Mat and on an assortment of smaller number line game boards)
that a number such as “four” can refer not only to a particular place on a
line, but also to a number of moves along the line. One can talk about going
four numbers forward from the number four on one’s fourth turn. Perhaps
the most important transition that children must make as they move from the
world of small countable objects to that of abstract numbers and numerical
operations is to treat the physical addition or subtraction of objects as equiva-
lent to movement forward or backward along a line. All children eventually
make this correspondence; until they do, however, they are unable to move
from physical to mental operations with any insight.

Yet another way to represent numbers is with bar graphs and scales,
such as thermometers. In Sky Land (a name chosen as a child-friendly sub-
stitute for the word “scale,” as in “reach for the sky”), this sort of representa-
tion is always used in a vertical direction, such that bigger numbers are
higher up. These forms of representation make a convenient context for
introducing children to the use of numbers as a measure, as a way to keep
track of continuous quantity in standard units. Systems for measuring con-
tinuous quantity have the same long history as do systems for enumerating
discrete objects, and it is important to develop children’s intuitions for the
properties of the former systems from the outset.13

Dials are the final representation of number included in Number Worlds.
Sundials and clocks are more sophisticated ways of representing numbers
since they incorporate the cyclic quality—a path that repeats itself—pos-
sessed by certain real-world dimensions, such as time and the natural rhythm
of the seasons. In Circle Land, children develop spatial intuitions (e.g., by
playing games on a skating rink configuration that requires them to chart
progress within and across revolutions to determine a winner) that become
the foundation for understanding many concepts in mathematics dealing
with circular motion (e.g., pie charts, time, and number bases).
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Although the five forms of number representation have been introduced
in a fixed order here, from easiest to most difficult, an important goal of the
Number Worlds program is to help children appreciate the equivalence of
these forms of representation and of the language used to talk about num-
ber in these contexts. To this end, children are encouraged to explore all
lands and all number representations early in the school year by beginning
with activities in each land that target lower-level knowledge objectives (la-
beled Level 1 activities) and by proceeding throughout the year to activities
in each land that target higher-level knowledge objectives (labeled Level 3
activities). By moving back and forth across lands throughout the year, chil-
dren gradually come to appreciate, for example, that “nine” is bigger than
“seven” by a precise amount and that this difference holds whether these
numbers are represented as groups of objects, as positions along a path, or
as points on a scale. They also come to appreciate that this difference is the
same whether it is talked about as “more” in one context, as “farther along”
in another, or as “higher up” in a third. For adults, these various manifesta-
tions of the whole-number counting system are easily seen to be equivalent.
To very young children, they are quite different, so different that they might
appear to be from different “worlds.” Helping children construct an orga-
nized knowledge network in which these ideas are interconnected (learning
principle 2) is thus a major goal of Number Worlds.

Design Principle 2: Providing Opportunities to Link the
“World of Quantity” with the “World of Counting
Numbers” and the “World of Formal Symbols”

Although every activity created for the Number Worlds program pro-
vides opportunities to link the “world of quantity” with the “world of count-
ing numbers” and the “world of formal symbols”—or to link two of these
worlds—the three activities described in this section illustrate this principle
nicely, at the simplest level. Readers should note that the remaining design
principles are also illustrated in these examples, but to preserve the focus
are not highlighted in this section.

Plus Pup

Plus Pup is an Object Land activity that is used in both the preschool
and kindergarten programs to provide opportunities for children to (1) count
a set of objects and identify how many there are, and (2) recognize that
when one object is added, the size of the set is increased by one (see Figure
6-3). To play this game, the teacher and children put a certain number of
cookies into a lunch bag to bring to school, carefully counting the cookies as
they do so, and being sure they remember how many cookies they placed
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inside the bag. Next, the teacher (or a child volunteer) takes a little walk (as
if going to school) and encounters Plus Pup along the way (by picking up
the Plus Pup card). As the icon on the card suggests, Plus Pup gives the
cookie carrier one more cookie. The bag is opened up slightly to receive a
real cookie and is then promptly closed. The challenge children confront is
this: How many cookies are in the bag now? How can we figure this out?

If the teacher is patient and allows children to explore these questions
as genuine problems, a range of solution strategies are often provided as
children play and replay the game with different quantities of cookies. The
first and most obvious solution children suggest (and implement) is to open
the bag, take the cookies out, and count them. This provides opportunities
for the teacher to draw children’s attention to the quantity transaction that
has occurred to produce this amount. For example, the teacher may say,
“We have five cookies now. How do we know how many Plus Pup gave us?
How can we figure this out?” If no answers are forthcoming, the teacher can
prompt the children by asking, “Does anyone remember how many cookies
we had at the start?”—thus leading them to make sense of the quantity
transaction that has occurred (i.e., the initial amount, the amount added, the
end total) by describing the entire process in their own words.

As children replay this game, they gradually come to realize that they
can use the counting numbers themselves, with or without their fingers, to
solve this sort of problem, and that dumping the cookies out of the bag to
count them is unnecessary. When children begin to offer this solution strat-
egy, the teacher can shift the focus of her questions to ask, “Who can predict
how many cookies are in the bag now? How do you know?” After predic-
tions and explanations (or proofs) have been offered, the children can be
allowed to examine the contents of the bag “to confirm or verify their pre-

FIGURE 6-3 Plus Pup—an Object Land activity used to
provide opportunities for children to understand addition
problems.
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dictions.” Although preschoolers are often unfamiliar with these scientific
terms when first introduced, it is not long before they understand the mean-
ing of the terms in this context and use these words themselves, feeling very
pleased with the air of sophistication this language bestows on their own
mathematical activity. By encouraging problem solving and communication,
this activity, like all activities in the program, makes children’s thinking vis-
ible, and in so doing provides the basis for ongoing assessment that is the
hallmark of assessment-centered classrooms.

The rationale that was created for this activity is as follows: “In this
activity, a giving pup icon is used to give children a meaningful mental
image of the addition operation. This image will serve as a conceptual bridge
and help children build strong connections between an increase in quantity
in the real world and the +1 symbol that describes this increase in the world
of formal mathematics” (Object Land: Lesson #7). Although children are not
expected to make explicit use of the +1 symbol in either the preschool or
kindergarten program, it is available for those who are ready to take advan-
tage of it. To our delight, children who have been exposed to this activity in
their preschool or kindergarten year spontaneously remember Plus Pup when
they encounter more complex addition problems later on, providing evi-
dence they have indeed internalized the set of connections (among name,
icon, and formal symbol) to which they were exposed earlier and are able to
use this knowledge network to help them make sense of novel addition
problems.

Minus Mouse

Once children have become familiar with Plus Pup and what Plus Pup
does, they are introduced to Minus Mouse (see Figure 6-4). The format of

FIGURE 6-4 Minus Mouse—an Object Land activity used
to provide opportunities for children to understand
subtraction problems.
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this activity is identical to that of the former except, of course, that whereas
Plus Pup will add one cookie to the bag, Minus Mouse will take one away.
The challenge children are asked to deal with in this activity is this: “How
many cookies will we have left?” How can we figure this out? The similarly
in format between these two activities and the repetition that results proves
not to be the deterrent to children that adults might expect. Most young
children prefer the comfort of the familiar to the excitement of the novel.
Indeed, they appear to thrive on the opportunities this similarity provides
for them to anticipate what might happen and, with confidence, make pre-
dictions about those outcomes.

Plus Pup Meets Minus Mouse

Once children have become familiar with Minus Mouse and reasonably
adept at solving the problems this activity presents for a range of single-digit
quantities, the teacher makes the problem more complex by including both
Plus Pup and Minus Mouse in the same activity. This time, when the cookie
carrier walks to school, he or she draws a card from a face-down pack and
either Plus Pup or Minus Mouse will surface. The challenge this time is to
interpret the icon with its associated symbol, to determine the action that
should be performed (adding one more cookie to the bag or taking one
away), and to figure out how to solve the problem of how many cookies are
in the bag now and how we can figure this out. Children who have become
reasonably competent at counting on (from the initial amount) to solve Plus
Pup problems and counting back (from the initial amount) to solve Minus
Mouse problems will now have to employ these strategies in a much more
flexible fashion. They will also have to pay much closer attention to the
meaning of the icon and its associated symbol and what this entails in terms
of the quantity transaction to be performed. Both of these challenges pose
bigger problems for children than adults might expect; thus, by providing
opportunities for children to confront and resolve these challenges, this ac-
tivity scaffolds the development of whole-number sense.

All three of the above activities can provide multiple opportunities for
teachers to assess each child’s current level of understanding as reflected in
the solutions constructed (or not constructed) for each of the problems posed,
the explanations provided, and the strategies employed (e.g., emptying the
cookies out of the bag to determine how many or using the counting num-
bers instead, with or without fingers, to solve the problem). These informal
assessments, in turn, can help teachers determine the quantity of cookies
that would provide an appropriate starting place for the next round of each
activity and the sorts of questions that should be posed to individual chil-
dren to help them advance their knowledge. By using assessment in this
formative fashion—to create learning opportunities that are finely attuned to
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children’s current understandings and that help them construct new knowl-
edge at the next level up—teachers are creating classrooms that are, at one
and the same time, learner-centered, knowledge-centered, and assessment-
centered.

Design Principle 3: Providing Visual and Spatial Analogs
of Number Representations That Children Can Actively
Explore in a Hands-On Fashion

Because the central conceptual understandings that the program was
designed to teach involve the coordination of spatial and numeric concepts,
it was deemed important to provide several opportunities for children to
explore the number system in a variety of spatial contexts, to scaffold this
coordination. The spatial contexts that were created for the Number Worlds
program often take the form of game boards on which number is depicted
as a position on a line, scale, or dial and on which quantity is depicted as
segments on these line, scale, and dial representations. By using a pawn to
represent “self” as player and by moving through these contexts to solve
problems posed by the game, children gain a vivid sense of the relationship
between movement along a line, scale, or dial and increases and decreases
in quantity. This experience is illustrated in the following activities.

The Skating Party Game

This game is played in Circle Land at the kindergarten level. It was
designed to help children realize that a dial (or a circular path) is another
device for representing quantity, and that the same relationships that apply
between numbers and movement on a number line apply also to numbers
and movement in this context (see Figure 6-5). In this game, a dial is repre-
sented as a circular path. By including 10 segments on this path, numbered
0 to 9, this prop provides opportunities for children to acquire an intuitive
understanding of the cyclical nature of the base-ten number system. This
understanding is explicitly fostered and built upon in activities children en-
counter later on, at higher levels of the program. The explicit learning objec-
tives that were developed for the Skating Party game are as follows: (1)
identify or compute set size, and associate set size with a position on a dial
(i.e., a circular path); (2) associate increasing a quantity with moving around
a dial; and (3) compare positions on a dial to identify which have more, less,
or the same amount, and use this knowledge to solve a problem.

These objectives are achieved as children engage in game play and
respond to questions that are posed by the teacher (or by a child serving as
group leader). With four children sharing one game board, children start
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game play by placing their pawns at the starting gate. They then take turns
rolling a die, counting the dots, and moving their pawns that many spaces
around the dial. Each time they complete a revolution around the dial, they
collect an Award card. At the end of the game, children count and compare
their Award cards, and the child with the most cards is the first winner,
followed by the child with the second most, who is the second winner, and
so on. In one variation of this game, the Award cards collected by each
group of four children are computed and compared, and a group winner is
declared.

Questions are posed at several points in game play, and the sorts of
questions that are put to individual children are most productive if they are
finely tuned to each child’s current level of understanding (learning prin-
ciple 1). For example, when all children have their pawns on the board, they
can be asked, “Who is farther around? Who has gone the least distance?
How much farther do you need to go to win an Award card?” These ques-
tions are always followed by “How do you know?” or “How did you figure
that out?” Plenty of time needs to be allowed for children to come up with
answers that make sense to them and for them to share their answers with
each other. When children are counting their Award cards, they can be
asked, “How many times did you go around the rink? Who has the most
Award cards? How come that child went around the rink more times than
this child if everyone had the same number of turns?” The last question is the
most challenging of this set, and beginning players often attribute going

FIGURE 6-5  Skating Party game board—a
Circle Land activity used to provide a hands-on
representation for children to explore the
relationship between movement and increases
and decreases in quantity.
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around the rink more times to skating faster (rather than to rolling a lot of
high numbers).

Eventually children will make this connection, and they can be encour-
aged to do so by being asked to pay close attention to movement around the
rink the next time they play. For example, the teacher might say, “Did that
child really skate faster? Let’s watch next time we play and see.” In encour-
aging children to construct their own answers to the question by reflecting
on their own activity, teachers are encouraging the use of metacognitive
processes and allowing children to take charge of their own learning (learn-
ing principle 3).

In a follow-up activity, the teacher adds another level of complexity to
this game by providing an illustrated set of skating cards that show either
“+1, You skate well”; “–1, You stumbled”; or “0,” blank symbol and image
(see Figures 6-6a and 6-6b). In this version of the game, children play as
before, but in addition, they draw a skating card from the face-down deck
after every turn and follow the instructions on the card to move one space
forward or backward around the rink, or to stay where they are. This ver-
sion of the game provides opportunities for children to meet an additional
learning objective—identifying how many there will be if a set is increased
or decreased by one (or by two in a challenge activity). This objective, in
turn, is met most easily if the teacher scaffolds children’s learning by pro-
viding opportunities for them to talk about the quantity transactions they
are performing. For example, when a child draws a card, the teacher can
ask, “Where are you now? What does that card tell you to do? How far
around the rink will you be after you do that? Is that closer to the finish line

FIGURE 6-6 An illustrated set of skating cards used in the Circle Land Skating Party game.

a b
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or farther away from it? How do you know?” By answering and discussing
these questions and by confirming or disconfirming their thoughts and pre-
dictions with real actions, children gradually build up a solid intuitive un-
derstanding of the links among the world of quantity (in spatial contexts),
the world of counting numbers, and the world of formal symbols.

Rosemary’s Magic Shoes

This game provides an illustration of a spatial context developed for
Line Land in the second-grade program to help children build an under-
standing of the base-ten number system. The prop itself—the Neighborhood
Number Line—comprises 10 blocks of houses, each containing 10 houses
that attach with Velcro to create a linear neighborhood of 100 houses that is
15 feet long when fully assembled (see Figure 6-7). This prop is used exten-
sively in the first-grade program as well, to teach several concepts implicit in
the 1–100 number sequence. The character created for this game, a profes-
sional monster-tracker called Rosemary, has a pair of magic shoes that al-
lows her to leap over 10 houses in a single bound. For Rosemary’s shoes to
work, however, she first must tell them how many times to jump 10 houses
and how many times to walk past 1 house.

To play this game, children take turns picking a number tile that indi-
cates a house where the presence of a monster has been suspected. Using
Rosemary’s magic shoes, they then move to the house as quickly and effi-
ciently as possible; check for monsters (by drawing a card from a face-down
deck that indicates the monsters’ presence or absence); and, if indicated,
place a sticker on the house to show that it is a “monster-free zone.” In later

FIGURE 6-7 Neighborhood Number Line game board—used to help children understand the
base-ten number system.
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versions of this game, children are required to keep a written record of
Rosemary’s movements, using the formal symbol system to do so. In all
versions of this game, they are required to watch each player carefully to see
if the oral directions given (e.g., “Magic shoes, jump over 5 blocks and walk
to the eighth house”) were followed precisely, to consider whether other
ways of getting to the same house (#58) might have been more efficient, and
to share their thinking with the class.

With exposure to this game, children gradually come to realize that
they can leap over 10 houses (i.e., count up or down by tens) from any
number in the sequence, not just from the decade markers (e.g., 10, 20, 30).
They also come to realize that they need not always move in a forward
direction (e.g., count up) to reach a particular number, that it might be
more efficient to move to the closest tens marker and go back a few steps
(e.g., jump over 6 blocks and walk back two steps to get to house #58).
With these realizations and opportunities to put them into practice, children
gain fluency in computing the distance between any two numbers in the 1-
100 sequence and in moving fluently from one location (or number) to the
next, using benchmark values to do so. They also gain an appreciation of
the relative value of numbers in this sequence (e.g., that 92 is a long way
away from 9) and can recognize immediately that the sum of 9 + 2 could
not possibly be 92, an error that is not uncommon for this age group. The
knowledge gains that have just been described—the acquisition of proce-
dural fluency, factual knowledge, and conceptual understanding—appear
to be greatly facilitated by the provision of spatial analogs of the number
system that children can actively explore in a hands-on fashion (design
principle 3 as set forth in this chapter), coupled with opportunities to ex-
plain their thinking, to communicate with their peers, and to reflect on their
own activity (learning principle 3).

Design Principle 4: Engaging Children’s Emotions and
Capturing Their Imagination So Knowledge Constructed
Is Embedded Not Only in Their Minds, but Also in Their
Hopes, Fears, and Passions

Each of the activities described thus far has been engaging for children
and has captured their imagination. The one described in this section possi-
bly achieves this purpose to a greater extent than most others. It also pro-
vides an example of how the Number Worlds program addresses a major
learning goal for first grade: helping children link their central conceptual
structure for whole number to the formal symbol system.
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Dragon Quest

Dragon Quest was developed for Picture Land in the first-grade pro-
gram (see Figure 6-8). Although the game is played on a line and children
can use objects to solve the problems posed by the game, the major repre-
sentation of number that children must work with in this game to achieve
the game’s goals are numerals and operation signs. For this reason, this
game is classified as a Picture Land activity. Children are introduced to Phase
1 of this activity by being told a story about a fire-breathing dragon that has
been terrorizing the village where the children live. The children playing the
game are heroes who have been chosen to seek out the dragon and put out
his fire. To extinguish this dragon’s fire (as opposed to that of other, more
powerful dragons they will encounter in later phases), a hero will need at
least 10 pails of water. If a hero enters the dragon’s area with less than 10
pails of water, he or she will become the dragon’s prisoner and can be
rescued only by one of the other players.

To play the game, children take turns rolling a die and moving their
playing piece along the colored game board. If they land on a well pile
(indicated by a star), they can pick a card from the face-down deck of cards
that illustrate, with images and symbols (e.g., + 4), a certain number of pails
of water. Children are encouraged to add up their pails of water as they
receive them and are allowed to use a variety of strategies to do so, ranging
from mental math (which is encouraged) to the use of tokens to keep track
of the quantity accumulated. The first child to reach the dragon’s lair with at
least 10 pails of water can put out the dragon’s fire and free any teammates
who have become prisoners.

Needless to say, this game is successful in capturing children’s imagina-
tion and inducing them to engage in the increasing series of challenges
posed by later versions. As they do so, most children acquire increasingly
sophisticated number competencies. For example, they become capable of
performing a series of successive addition and subtraction operations in

FIGURE 6-8 Dragon Quest game
board—a Picture Land activity that
uses numerals and operation signs
to achieve the game’s goals.
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their heads when spill cards (e.g., – 4) are added to the set of cards in the
well pile. When they encounter more-powerful dragons whose fire can be
extinguished only with 20 buckets of water, they become capable of per-
forming these operations with larger sets of numbers and with higher num-
bers. When they are required to submit formal proof to the mayor of the
village that they have amassed sufficient pails of water to put out the dragon’s
fire before they are allowed to do so, they become capable of writing a
series of formal expressions to record the number of pails received and
spilled over the course of the game. In such contexts, children have ample
opportunity to use the formal symbol system in increasingly efficient ways
to make sense of quantitative problems they encounter in the course of their
own activity.

Design Principle 5: Providing Opportunities for
Children to Acquire Computational Fluency As Well As
Conceptual Understanding

Although opportunities to acquire computational fluency as well as con-
ceptual understanding are built into every Number Worlds activity, compu-
tational fluency is given special attention in the activities developed for the
Warm-Up period of each lesson. In the prekindergarten and kindergarten
programs, these activities typically take the form of count-up and count-
down games that are played in each land, with a prop appropriate for that
land. This makes it possible for children to acquire fluency in counting and,
at the same time, to acquire a conceptual understanding of the changes in
quantity that are associated with each successive number up (or down) in
the counting sequence. This is illustrated in an activity, developed for Sky
Land, that is always introduced after children have become reasonably flu-
ent in the count-up activity that uses the same prop.

Sky Land Blastoff

In this activity, children view a large, specially designed thermometer
with a moveable red ribbon that is set to 5 (or 10, 15, or 20, depending on
children’s competence) (see Figure 6-9). Children pretend to be on a rocket
ship and count down while the teacher (or a child volunteer) moves the red
ribbon on the thermometer to correspond with each number counted. When
the counting reaches “1,” all the children jump up and call “Blastoff!” The
sequence of counting is repeated if a counting mistake is made or if anyone
jumps up too soon or too late. The rationale that motivated this activity is as
follows: “Seeing the level of red liquid in a thermometer drop while count-
ing down will give children a good foundation for subtraction by allowing
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them to see that a quantity decreases in scale height with each successive
number down in the sequence. This will also lay a foundation for measure-
ment” (Sky Land: Activity #2).

This activity is repeated frequently over the course of the school year,
with the starting point being adjusted over time to accommodate children’s
growing ability. Children benefit immensely from opportunities to perform
(or lead) the count-down themselves and/or to move the thermometer rib-
bon while another child (or the rest of the class) does the counting. When
children become reasonably fluent in basic counting and in serial counting
(i.e., children take turns saying the next number down), the teacher adds a
level of complexity by asking them to predict where the ribbon will be if it
is on 12, for example, and they count down (or up) two numbers, or if it is
on 12 and the temperature drops (or rises) by 2 degrees. Another form of
complexity is added over the course of the school year when children are
asked to demonstrate another way (e.g., finger displays, position on a hu-
man game mat) to represent the quantity depicted on the thermometer and
the way this quantity changes as they count down. By systematically increas-
ing the complexity of these activities, teachers expose children to a learning
path that is finely attuned to their growing understanding (learning principle
1) and that allows them to gradually construct an important network of
conceptual and procedural knowledge (learning principle 2).

In the programs for first and second grade, higher-level computation
skills (e.g., fluent use of strategies and procedures to solve mental arithmetic

FIGURE 6-9 A specially designed thermometer for the Sky Land Blastoff
activity—to provide an understanding of the changes in quantity
associated with each successive number (up) or down in the counting
sequence.
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problems) are fostered in the Warm-Up activities. In Guess My Number, for
example, the teacher or a child picks a number card and, keeping it hidden,
generates two clues that the rest of the class can use to guess the number
(e.g., it is bigger than 25 and smaller than 29). Guessers are allowed to ask
one question, if needed, to refine their prediction (e.g., “Is it an odd num-
ber?” “Is it closer to 25 or to 29?”).

Generating good clues is, of course, more difficult than solving the prob-
lem because doing so requires a refined sense of the neighborhood of num-
bers surrounding the target number, as well as their relationship to this
number. In spite of the challenges involved, children derive sufficient enjoy-
ment from this activity to persevere through the early stages and to acquire
a more refined number sense, as well as greater computational fluency, in
the process. In one lovely example, a first-grade student provided the fol-
lowing clues for the number he had drawn: “It is bigger than 8 and it is 1
more than 90 smaller than 100.” The children in the class were stymied by
these clues until the teacher unwittingly exclaimed, “Oh, I see, you’re using
the neighborhood number line,” at which point all children followed suit,
counted down 9 blocks of houses, and arrived at a correct prediction, “9.”

Design Principle 6: Encouraging the Use of
Metacognitive Processes (e.g., Problem Solving,
Communication, Reasoning) That Will Facilitate
Knowledge Construction

In addition to opportunities for problem solving, communication, and
reasoning that are built into the activities themselves (as illustrated in the
examples provided in this chapter), three additional supports for these pro-
cesses are included in the Number Worlds program. The first is a set of
question cards developed for specific stages of each small-group game. The
questions (e.g., “How many buckets of water do you have now?”) were
designed to draw children’s attention to the quantity displays they create
during game play (e.g., buckets of water collected and spilled) and the
changes in quantity they enact (e.g., collecting four more buckets), and to
prompt them to think about these quantities and describe them, performing
any computations necessary to answer the question. Follow-up questions
that are also included (e.g., “How did you figure that out?”) prompt children
to reflect on their own reasoning and to put it into words, using the lan-
guage of mathematics to do so. Although the question cards are typically
used by the teacher (or a teacher’s aide) at first, children can gradually take
over this function and, in the process, take greater control over their own
learning (learning principle 3). This transition is facilitated by giving one
child in the group the official role of Question Poser each time the game is
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played. By giving children important roles in the learning process (e.g.,
Question-Poser, Facilitator, Discussion Leader, Reporter) and by allowing
them to be teachers as well as learners, teachers can create the sort of com-
munity-centered classroom that is described in Chapters 1 and 5.

The second support is a set of dialogue prompts included in the teacher’s
guide, which provides a more general set of questions (e.g., “Who has gone
the farthest? How do you know?”) than those provided with the game. Al-
though both sets of questions are highly useful in prompting children to use
metacognitive processes to make mathematical sense of their own activity,
they provide no guidance on how a teacher should respond to the answers
children provide. Scaffolding good math talk is still a significant challenge
for most primary and elementary teachers. Having a better understanding of
the sorts of answers children give at different age levels, as well as increased
opportunities to listen to children explain their thinking, can be helpful in
building the expertise and experience needed for the exceedingly difficult
task of constructing follow-up questions for children’s answers that will push
their mathematical thinking to higher levels.

The third support for metacognitive processes that is built into the Num-
ber Worlds program is a Wrap-Up period that is provided at the end of each
lesson. In Wrap-Up, the child who has been assigned the role of Reporter for
the small-group problem-solving portion of the lesson (e.g., game play)
describes the mathematical activity his or her group did that day and what
they learned. The Reporter then takes questions from the rest of the class,
and any member of the Reporter’s team can assist in providing answers. It is
during this portion of the lesson that the most significant learning occurs
because children have an opportunity to reflect on aspects of the number
system they may have noticed during game play, explain these concepts to
their peers, and acquire a more explicit understanding of the concepts in the
process. Over time, Wrap-Up comes to occupy as much time in the math
lesson as all the preceding activities (i.e., the Warm-Up activities and small-
group problem-solving activities) put together.

With practice in using this format, teachers become increasingly skilled
at asking good questions to get the conversation going and, immediately
thereafter, at taking a back seat in the discussion so that children have
ample opportunity to provide the richest answers they are capable of gen-
erating at that point in time. (Some wonderful examples of skilled teachers
asking good questions in elementary mathematics classrooms are available
in the video and CD-ROM products of the Institute for Learning
[www.institutefor learning.org].) This takes patience, a willingness to turn
control of the discussion over to the children, and faith that they have
something important to say. Even at the kindergarten level, children appear
to be better equipped to rise to this challenge than many teachers, who,
having been taught that they should assume the leadership role in the class,
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often feel that they should dominate the discussion. Teachers who can rise
to this challenge have found that their faith is amply rewarded by the so-
phistication of the explanations children provide, even at the kindergarten
level; by the opportunities this occasion provides for assessing children’s
growth and current understandings; and by the learning and achievement
gains children demonstrate on standard measures.

WHAT SORTS OF LEARNING DOES THIS
APPROACH MAKE POSSIBLE?

The Number Worlds program was developed to address three major
learning goals: to enable children to acquire (1) conceptual knowledge of
number as well as procedural knowledge (e.g., computational fluency); (2)
number sense (e.g., an ability to use benchmark values, an ability to solve
problems in a range of contexts); and (3) an interest in and positive attitude
toward mathematics. Program evaluation for the most part has focused on
assessing the extent to which children who have been exposed to the pro-
gram have been able to demonstrate gains on any of these fronts. The re-
sults of several evaluation studies are summarized below.

The Number Worlds program has now been tried in several different
communities in Canada and in the United States. For research purposes, the
groups of students followed have always been drawn from schools serving
low-income, predominantly inner-city communities. This decision was based
on the assumption that if the program works for children known to be at risk
for school failure, there is a good chance that it will work as well, or even
better, for those from more affluent communities. Several different forms of
evaluation have been conducted.

In the first form of evaluation, children who had participated in the
kindergarten level of the program (formerly called Rightstart) were com-
pared with matched controls who had taken part in a math readiness pro-
gram of a different sort. On tests of mathematical knowledge, on a set of
more general developmental measures, and on a set of experimental mea-
sures of learning potential, children who had participated in the Number
Worlds program consistently outperformed those in the control groups (see
Box 6-1 for findings from one of these studies).14  In a second type of evalu-
ation, children who had taken part in the kindergarten level of the program
(and who had graduated into a variety of more traditional first-grade class-
rooms) were followed up 1 year later and evaluated on an assortment of
mathematical and scientific tests, using a double-blind procedure. Once again,
those who had participated in the Number Worlds program in kindergarten
were found to be superior on virtually all measures, including teacher evalu-
ations of “general number sense” (see Box 6-2).15
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The expansion of the Number Worlds program to include curricula for
first and second grades permitted a third form of evaluation—a longitudinal
study in which children were tracked over a 3-year period. At the beginning
of the study and the end of each year, children who had participated in the
Number Worlds program were compared with two other groups: (1) a sec-
ond low-socioeconomic-status group that had originally been tested as hav-
ing superior achievement in mathematics, and (2) a mixed-socioeconomic-
status (largely middle-class) group that had also demonstrated a higher level
of performance at the outset and attended an acclaimed magnet school with
a special mathematics coordinator and an enriched mathematics program.
These three groups are represented in the figure of Box 6-6, and the differ-
ences between the magnet school students and the students in the low-
socioeconomic-status groups can be seen in the different start positions of
the lines on the graph. Over the course of this study, which extended from
the beginning of kindergarten to the end of second grade, children who had
taken part in the Number Worlds program caught up with, and gradually
outstripped, the magnet school group on the major measure used through-
out this study—the Number Knowledge test (see Box 6-6). On this measure,
as well as on a variety of other mathematics tests (e.g., measures of number
sense), the Number Worlds group outperformed the second low-socioeco-
nomic-status group from the end of kindergarten onward. On tests of proce-
dural knowledge administered at the end of first grade, they also compared
very favorably with groups from China and Japan that were tested on the
same measures.16

 These findings provide clear evidence that a program based on the
principles of How People Learn (i.e., the Number Worlds program) works for
the population of children most in need of effective school-based instruc-
tion—those living in poverty. In a variety of studies, the program enabled
children from diverse cultural backgrounds to start their formal learning of
arithmetic on an equal footing with their more-advantaged peers. It also
enabled them to keep pace with their more-advantaged peers (and even
outperform them on some measures) as they progressed through the first
few years of formal schooling and to acquire the higher-level mathematics
concepts that are central for continued progress in this area. In addition to
the mathematics learning and achievement demonstrated in these studies,
two other findings are worthy of note: both teachers and children who have
used the Number Worlds program consistently report a positive attitude to-
ward the teaching and learning of math. For teachers, this often represents a
dramatic change in attitude. Math is now seen as fun, as well as useful, and
both teachers and children are eager to do more of it.
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BOX 6-6 Comparing Number Worlds and Control Group Outcomes

As the figure below shows, the magnet school group began kindergarten with
substantially higher scores on the Number Knowledge test than those of children
in the Number Worlds and control groups. The gap indicated a developmental lag
that exceeded one year, and for many children in the Number Worlds group was
closer to 2 years. By the end of the kindergarten year, however, the Number
Worlds children had narrowed this gap to a small fraction of its initial size. By the
end of the second grade, the Number Worlds children actually outperformed the
magnet school group. In contrast, the initial gap between the control group
and the magnet school group did not narrow over time. The control group chil-
dren did make steady progress over the 3 years; however, they were never able
to catch up.

Number Worlds

Control

Magnet School

Mean developmental level scores on Number Knowledge test at four time periods.
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SUMMARY AND CONCLUSION
It was suggested at the beginning of this chapter that the teaching of

whole-number concepts could be improved if each math teacher asked three
questions on a regular basis: (1) Where am I now? (in terms of the knowl-
edge children in their classrooms have available to build upon); (2) Where
do I want to go? (in terms of the knowledge they want all children in their
classrooms to acquire during the school year); and (3) What is the best way
to get there? (in terms of the learning opportunities they will provide to
enable all children in their class to reach the chosen objectives). The chal-
lenges these questions pose for primary and elementary teachers who have
not been exposed in their professional training to the knowledge base needed
to construct good answers were also acknowledged. Exposing teachers to
this knowledge base is a major goal of the present volume. In this chapter, I
have attempted to show how the three learning principles that lie at the
heart of this knowledge base—and that are closely linked to the three ques-
tions posed above—can be used to improve the teaching and learning of
whole numbers.

To illustrate learning Principle 1 (eliciting and building upon student
knowledge), I have drawn from the cognitive developmental literature and
described the number knowledge children typically demonstrate at each age
level between ages 4 and 8 when asked a series of questions on an assess-
ment tool—the Number Knowledge Test—that was created to elicit this knowl-
edge. To address learning Principle 2 (building learning paths and networks
of knowledge), I have again used the cognitive developmental literature to
identify knowledge networks that lie at the heart of number sense (and that
should be taught) and to suggest learning paths that are consistent with the
goals for mathematics education provided in the NCTM standards.17  To illus-
trate learning Principle 3 (building resourceful, self-regulating mathematics
thinkers and problem solvers), I have drawn from a mathematics program
called Number Worlds that was specifically developed to teach the knowl-
edge networks identified for Principle 2 and that relied heavily on the find-
ings of How People Learn to achieve this goal. Other programs that have also
been developed to teach number sense and to put the principles of How
People Learn into action have been noted in this chapter, and teachers are
encouraged to explore these resources to obtain a richer picture of how
Principle 3 can be realized in mathematics classrooms.

In closing, I would like to acknowledge that it is not an easy task to
develop a practice that embodies the three learning principles outlined herein.
Doing so requires continuous effort over a long period of time, and even
when this task has been accomplished, teaching in the manner described in
this chapter is hard work. Teachers can take comfort in the fact the these
efforts will pay off in terms of children’s mathematics learning and achieve-
ment; in the positive attitude toward mathematics that students will acquire
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and carry with them throughout their lives; and in the sense of accomplish-
ment a teacher can derive from the fruits of these efforts. The well-deserved
professional pride that this can engender, as well as the accomplishments of
children themselves, will provide ample rewards for these efforts.
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7
Pipes, Tubes, and Beakers:

New Approaches to Teaching the
Rational-Number System

Joan Moss

Poor Sally. Her anger and frustration with fractions are palpable. And
they no doubt reflect the feelings and experiences of many students. As
mathematics education researchers and teachers can attest, students are of-
ten vocal in their expression of dislike of fractions and other representations
of rational numbers (percents and decimals). In fact, the rational-number
system poses problems not only for youngsters, but for many adults as well.1

In a recent study, masters students enrolled in an elementary teacher-train-
ing program were interviewed to determine their knowledge and under-
standing of basic rational-number concepts. While some students were con-
fident and produced correct answers and explanations, the majority had
difficulty with the topic. On attempting to perform an operation involving
fractions, one student, whose sentiments were echoed by many, remarked,
“Oh fractions! I know there are lots of rules but I can’t remember any of
them and I never understood them to start with.”2

PEANUTS reprinted by permission of United Feature Syndicate, Inc.
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We know from extensive research that many people—adults, students,
even teachers—find the rational-number system to be very difficult.3  Intro-
duced in early elementary school, this number system requires that students
reformulate their concept of number in a major way. They must go beyond
whole-number ideas, in which a number expresses a fixed quantity, to un-
derstand numbers that are expressed in relationship to other numbers. These
new proportional relationships are grounded in multiplicative reasoning that
is quite different from the additive reasoning that characterizes whole num-
bers (see Box 7-1).4  While some students make the transition smoothly, the
majority, like Sally, become frustrated and disenchanted with mathematics.5

Why is this transition so problematic?
A cursory look at some typical student misunderstandings illuminates

the kinds of problems students have with rational numbers. The culprit ap-
pears to be the continued use of whole-number reasoning in situations where
it does not apply. When asked which number is larger, 0.059 or 0.2, a major-
ity of middle school students assert that 0.059 is bigger, arguing that the
number 59 is bigger than the number 2.6  Similarly, faulty whole-number
reasoning causes students to maintain, for example, that the fraction 1/8 is
larger than 1/6 because, as they say, “8 is a bigger number than 6.”7  Not
surprisingly, students struggle with calculations as well. When asked to find
the sum of 1/2 and 1/3, the majority of fourth and sixth graders give the
answer 2/5. Even after a number of years working with fractions, some
eighth graders make the same error, illustrating that they still mistakenly
count the numerator and denominator as separate numbers to find a sum.8

Clearly whole-number reasoning is very resilient.
Decimal operations are also challenging.9  In a recent survey, research-

ers found that 68 percent of sixth graders and 51 percent of fifth and seventh
graders asserted that the answer to the addition problem 4 + .3 was .7.10  This
example also illustrates that students often treat decimal numbers as whole
numbers and, as in this case, do not recognize that the sum they propose as
a solution to the problem is smaller than one of the addends.

The introduction of rational numbers constitutes a major stumbling block
in children’s mathematical development.11  It marks the time when many
students face the new and disheartening realization that they no longer un-
derstand what is going on in their mathematics classes.12  This failure is a
cause for concern. Rational-number concepts underpin many topics in ad-
vanced mathematics and carry significant academic consequences.13  Stu-
dents cannot succeed in algebra if they do not understand rational numbers.
But rational numbers also pervade our daily lives.14  We need to be able to
understand them to follow recipes, calculate discounts and miles per gallon,
exchange money, assess the most economical size of products, read maps,
interpret scale drawings, prepare budgets, invest our savings, read financial
statements, and examine campaign promises. Thus we need to be able to
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BOX 7-1 Additive and Multiplicative Reasoning

Lamon,15  whose work on proportional reasoning and rational number has made a
great contribution to our understanding of students’ learning, elucidates the dis-
tinction between relative and absolute reasoning. She asks the learner to con-
sider the growth of two fictitious snakes: String Bean, who is 4 feet long when
the story begins, and Slim, who is 5 feet long. She tells us that after 5 years, both
snakes have grown. String Bean has grown from 4 to 7 feet, and Slim has grown
from 5 to 8 feet (see the figure below). She asks us to compare the growth of
these two snakes and to answer the question, “Who grew more?”

Lamon suggests that there are two answers. First, if we consider absolute
growth, both snakes grew 3 feet, so both grew the same amount. The second
answer deals with relative growth; from this perspective, String Bean grew the
most because he grew 3/4 of his length, while Slim grew only 3/5 of his length. If
we compare the two fractions, 3/4 is greater than 3/5, and so we conclude that
String Bean has grown proportionally more than Slim.

Lamon asks us to note that while the first answer, about the absolute differ-
ence, involves addition, the second answer, about the relative difference, is solved
through multiplication. In this way she shows that absolute thinking is additive,
while relative thinking is multiplicative.
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understand rational numbers not only for academic success, but also in our
lives as family members, workers, and citizens.

Do the principles of learning highlighted in this book help illuminate
the widespread problems observed as students grapple with rational num-
ber? Can they point to more effective approaches to teaching rational num-
ber? We believe the answer to both these questions is “yes.” In the first
section below we consider each of the three principles of How Students
Learn, beginning with principle 2—the organization of a knowledge net-
work that emphasizes core concepts, procedural knowledge, and their con-
nections. We then turn to principle 1—engaging student preconceptions and
building on existing understandings. Finally we consider metacognitive in-
struction as emphasized in principle 3.

The second section focuses on instruction in rational number. It begins
with a description of frequently used instructional approaches and the ways
in which they diverge from the above three principles. We then describe an
experimental approach to teaching rational number that has proven to be
successful in helping students in fourth, fifth, and sixth grades understand
the interconnections of the number system and become adept at moving
among and operating with the various representations of rational number.
Through a description of lessons in which the students engaged and proto-
cols taken from the research classrooms, we set out the salient features of
the instructional approach that played a role in shaping a learning-centered
classroom environment. We illustrate how in this environment, a focus on
the interconnections among decimals, fractions, and percents fosters stu-
dents’ ability to make informed decisions on how to operate effectively with
rational numbers. We also provide emerging evidence of the effectiveness of
the instructional approach. The intent is not to promote our particular cur-
riculum, but rather to illustrate the ways in which it incorporates the prin-
ciples of How People Learn, and the observed changes in student under-
standing and competence with rational numbers that result.

RATIONAL-NUMBER LEARNING AND THE
PRINCIPLES OF HOW PEOPLE LEARN

The Knowledge Network: New Concepts of Numbers and
New Applications (Principle 2)

What are the core ideas that define the domain of rational numbers?
What are the new understandings that students will have to construct? How
does a beginning student come to understand rational numbers?

Let us look through the eyes of a young student who is just beginning to
learn about rational number. Until this point, all of her formal instruction in
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arithmetic has centered on learning the whole-number system. If her learn-
ing has gone well, she can solve arithmetic problems competently and easily
makes connections between the mathematics she is learning and experi-
ences of her daily life. But in this next phase of her learning, the introduc-
tion of rational number, there will be many new and intertwined concepts,
new facts, new symbols that she will have to learn and understand—a new
knowledge network, if you will. Because much of this new learning is based
on multiplicative instead of whole-number relations, acquiring an under-
standing of this new knowledge network may be challenging, despite her
success thus far in mathematics. As with whole-number arithmetic, this do-
main connects to everyday life. But unlike whole numbers, in which the
operations for the most part appear straightforward, the operations involved
in the learning of rational numbers may appear to be less intuitive, at odds
with earlier understandings (e.g., that multiplication always makes things
bigger), and hence more difficult to learn.

New Symbols, New Meanings, New Representations

One of the first challenges facing our young student is that a particular
rational number can take many forms. Until now her experience with sym-
bols and their referents has been much simpler. A number—for example,
four—is represented exclusively by one numeral, 4. Now the student will
need to learn that a rational number can be expressed in different ways—as
a decimal, fraction, and percent. To further complicate matters, she will have
to learn that a rational-number quantity can be represented by an infinite
number of equivalent common and decimal fractions. Thus a rational num-
ber such as one-fourth can be written as 1/4, 2/8, 3/12, 4/16, 0.25, 0.250, and
so on.

Not only does the learning of rational number entail the mastery of
these forms and of the new symbol systems that are implied, but the learner
is also required to move among these various forms flexibly and efficiently.16

Unfortunately, this flow between representations does not come easily.17  In
fact, even mature students are often challenged when they try to understand
the relations among the representations.18 To illustrate how difficult translat-
ing between fractions and decimals can be, I offer two examples taken from
our research.

In a recent series of studies, we interviewed fourth, sixth, and eighth
graders on a number of items that probed for rational-number understand-
ing. One of the questions we asked was how the students would express the
quantity 1/8 as a decimal. This question proved to be very challenging for
many, and although the students’ ability increased with age and experience,
more than half of the sixth and eighth graders we surveyed asserted that as
a decimal, 1/8 would be 0.8 (rather than the correct answer, 0.125).
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In the next example, an excerpt taken from an interview conducted as
part of a pretest, Wyatt, a traditionally trained fifth-grade student, discussed
ordering a series of rational numbers presented to him in mixed representa-
tions.

Interviewer Here are 3 numbers: 2/3, 0.5, and 3/4. Could
you please put these numbers in order from
smallest to largest?

Wyatt Well, to start with, I think that the decimal 0.5
is bigger than the fractions because it’s a
decimal, so it’s just bigger, because fractions
are really small things.

The response that 1/8 would equal 0.8 should be familiar to many who
have taught decimals and fractions. As research points out, students have a
difficult time understanding the quantities involved in rational number and
thus do not appear to realize the unreasonableness of their assertion.19  As
for Wyatt’s assertion in the excerpt above that decimals and fractions cannot
be compared, this answer is representative of the reasoning of the majority
of the students in this class before instruction. Moreover, it reflects more
general research findings.20  Since most traditional instruction in rational num-
ber presents decimals, fractions, and percents separately and often as dis-
tinct topics, it is not surprising that students find this task confusing. Indeed,
the notion that a single quantity can have many representations is a major
departure from students’ previous experience with whole numbers; it is a
difficult set of understandings for them to acquire and problem-laden for
many.21

But this is not the only divergence from the familiar one-to-one corre-
spondence of symbol to referent that our new learner will encounter. An-
other new and difficult idea that challenges the relatively simple referent-to-
symbol relation is that in the domain of rational number, a single rational
number can have several conceptually distinct meanings, referred to
as “subconstructs.” Now our young student may well become completely
confused.

The Subconstructs or the Many Personalities of Rational Number

What is meant by conceptually distinct meanings? As an illustration,
consider the simple fraction 3/4. One meaning of this fraction is as a part–
whole relation in which 3/4 describes 3 of 4 equal-size shares. A second
interpretation of the fraction 3/4 is one that is referred to as the quotient
interpretation. Here the fraction implies division, as in 4 children sharing 3
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pies. As a ratio, 3/4 might mean there are, for example, 3 red cars for every
4 green cars (this is not to be confused with the part–whole interpretation
that 3/7 of the cars are red). Rational numbers can also indicate a measure.
Here rational number is a fixed quantity, most frequently accompanied by a
number line, that identifies a situation in which the fraction 1/4 is used
repeatedly to determine a distance (e.g., 3/4 of an inch = 1/4, 1/4, 1/4).
Finally, there is the interpretation of rational number as a multiplicative
operator, behaving as an operation that reduces or enlarges the size of an-
other quantity (e.g., the page has been reduced to 3/4 its original size).

The necessity of coordinating these different interpretations requires a
deep understanding of the concepts and interrelationships among them. On
the one hand, a student must think of rational numbers as a division of two
whole numbers (quotient interpretation); on the other, she must also come
to know these two numbers as an entity, a single quantity (measure), often
to be used in another operation. These different interpretations, generally
referred to as the “subconstructs” of rational number, have been analyzed
extensively22  and are a very important part of the knowledge network that
the learner will construct for rational number.

Reconceptualizing the Unit and Operations

While acquiring a knowledge network for rational-number understand-
ing means that new forms of representation must be learned (e.g., decimals,
fractions) and different interpretations coordinated, the learner will encoun-
ter many other new ideas—ideas that also depart from whole numbers. She
will have to come to understand that rational numbers are “dense”—mean-
ing that between any two rationals we can find an infinity of other numbers.
In the whole-number domain, number is discrete rather than continuous,
and the main operation is counting. This is a very big change indeed.23

Another difficult new set of understandings concerns the fundamental
change that students will encounter in the nature of the unit. In whole num-
bers, the unit is always explicit (6 refers to 6 units). In rational numbers, on
the other hand, the unit is often implied. But it is the unstated unit that gives
meaning to the represented quantities, operations, and the solutions. Con-
sider the student trying to interpret what is meant by the task of multiplying,
for example, 1/2 times 1/8. If the student recognizes that the “1/8” in the
problem refers to 1/8 of one whole, she may reason correctly that half of the
quantity 1/8 is 1/16. However since the 1 is not stated but implied, our
young student may err and, thinking the unit is 8, consider the answer to be
1/4 (since 4 is one-half of 8)—a response given by 75 percent of traditionally
instructed fourth and sixth graders students in our research projects.
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New Conceptualizations: Understanding Numbers As
Multiplicative Relations

Clearly the transition to learning rational numbers is challenging. Funda-
mentally, students must construct new meanings for numbers and opera-
tions. Development of the network of understandings for rational numbers
requires a core conceptual shift: numbers must be understood in multiplica-
tive relationship.

As a final illustration, I offer one more example of this basic shift. Again,
consider the quantity 3/4 from our new learner’s perspective. All of our
student’s prior learning will lead her to conclude that the 3 and 4 in 3/4 are
two separate numbers that define separate quantities. Her knowledge of
whole numbers will provide an additive understanding. Thus she will know
that 3 and 4 are contiguous on the number line and have a difference of 1.
But to interpret 3/4 as a rational number instead of considering these two
numbers to be independent, as many students mistakenly continue to do,24

our student must come to understand this fraction as a new kind of quantity
that is defined multiplicatively by the relative amount conveyed by the sym-
bols. Suddenly numbers are no longer simple. When placed in the context
of a fraction, 3 and 4 become a quantity between 0 and 1. Obvious to adults,
this numerical metamorphosis can be confusing to children.

How can children learn to make the transition to the complex world of
rational numbers in which the numbers 3 and 4 exist in a relationship and
are less than 1? Clearly, instruction will need to support a major conceptual
change. Looking at students’ prior conceptions and relevant understandings
can provide footholds to support that conceptual change.25

Students’ Errors and Misconceptions Based on
Previous Learning (Principle 1)

As the above examples suggest, students come to the classroom with
conceptions of numbers grounded in their whole-number learning that lead
them astray in the world of rational numbers. If instruction is to change
those conceptions, it is important to understand thoroughly how students
reason as they puzzle through rational-number problems. Below I present
verbatim interviews that are representative of faulty understandings held by
many students.

In the following excerpt, we return to our fifth grader, Wyatt. His task
was to order a series of rational numbers in mixed representations. Recall
his earlier comments that these representations could not be compared.
Now as the interview continues, he is trying to compare the fractions 2/3
and 3/4. The interview proceeds:
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Interviewer What about 2/3 and 3/4? Which of those is
bigger?

Wyatt Well, I guess that they are both the same size
because they both have one piece missing.

Interviewer I am not sure I understand what you mean
when you say that there is one piece missing.

Wyatt I’ll show you. [Wyatt draws two uneven circles,
roughly partitions the first in four parts, and
then proceeds to shade three parts. Next he
divides the second circle into three parts and
shades two of them (see Figure 7-1). O.K., here
is 3/4 and 2/3. You see they both have one part
missing. [He points to the unshaded sections
in both circular regions.] You see one part is
left out, so they are both the same.

FIGURE 7-1

Wyatt’s response is typical in asserting that 2/3 and 3/4 must be the
same size. Clearly he has not grasped the multiplicative relations involved in
rational numbers, but makes his comparisons based on operations from his
whole-number knowledge. When he asserts that 2/3 and 3/4 are the same
size because there is “one piece missing,” Wyatt is considering the differ-
ence of 1 in additive terms rather than considering the multiplicative rela-
tions that underlie these numbers.

Additive reasoning is also at the basis of students’ incorrect answers on
many other kinds of rational-number tasks. Mark, a sixth grader, is working
on a scaling problem in which he is attempting to figure out how the length
and width of an enlarged rectangle are related to the measurements of a
smaller, original rectangle. His challenge is to come up with a proportional
relation and, in effect, solve a “missing-term problem” with the following
relations: 8 is to 6 as 12 is to what number?

Interviewer I have two pictures of rectangles here (see
Figure 7-2). They are exactly the same shape,
but one of them is bigger than the other. I
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made this second one bigger by taking a
picture of the first one and then enlarging it
just a bit. As you can see, the length of the first
rectangle is 8 cm and the width is 6 cm.
Unfortunately, we know only the length of the
second one. That is 12 cm. Can you please tell
me what you think the width is?

Mark Well, if the first one (rectangle) is 8 cm and 6
cm, then the next one is 12 cm and 10 cm.
Because in the 8 and 6 one (rectangle) you
subtract 2 from the 8 (to get the difference of
the width and the length). So in the bigger
rectangle you have to subtract 2 from the 12.
So that’s 10. So the width of the big rectangle
is 10.

Mark’s error in choosing 10 instead of the correct answer of 9 is cer-
tainly representative of students in his age group—in fact, many adults use
the same kind of faulty reasoning.26  Mark clearly attempts to assess the
relations, but he uses an additive strategy to come up with a difference of 2.
To answer this problem correctly, Mark must consider the multiplicative
relations involved (the rectangle was enlarged so that the proportional rela-
tionship between the dimensions remains constant)—a challenge that eludes
many.

It is this multiplicative perspective that is difficult for students to adopt
in working with rational numbers. The misconception that Mark, the sixth
grader, displays in asserting that the height of the newly sized rectangle is 10
cm instead of the correct answer of 9 cm shows this failure clearly. Wyatt

6 cm

8 cm

12 cm

? cm

FIGURE 7-2
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certainly was not able to look at the relative amount in trying to distinguish
between the quantities 2/3 and 3/4. Rather, he reasoned in absolute terms
about the circles, that “. . . both have one piece missing.”

Metacognition and Rational Number (Principle 3)

A metacognitive approach to instruction helps students monitor their
understanding and take control of their own learning.27  The complexity of
rational number—the different meanings and representations, the challenges
of comparing quantities across the very different representations, the un-
stated unit—all mean that students must be actively engaged in sense mak-
ing to solve problems competently.28  We know, however, that most middle
school children do not create appropriate meanings for fractions, decimals,
and percents; rather, they rely on memorized rules for symbol manipulation.

The student errors cited at the beginning of this chapter indicate not
only the students’ lack of understanding of rational number, but also their
failure to monitor their operations and judge the reasonableness of their
responses.29  If classroom teaching does not support students in developing
metacognitive skills—for example, by encouraging them to explain their
reasoning to their classmates and to compare interpretations, strategies, and
solutions—the consequences can be serious. Student can stop expecting
math to make sense. Indeed for many students, rational number marks the
point at which they draw this conclusion.

INSTRUCTION IN RATIONAL NUMBER
Why does instruction so often fail to change students’ whole-number

conceptions? Analyses of commonly used textbooks suggest that the prin-
ciples of How People Learn are routinely violated. First, it has been noted
that—in contrast to units on whole-number learning—topics in rational num-
ber are typically covered quickly and superficially. Yet the major conceptual
shift required will take time for students to master thoroughly. Within the
allotted time, too little is devoted to teaching the conceptual meaning of
rational number, while procedures for manipulating rational numbers re-
ceive greater emphasis.30  While procedural competence is certainly impor-
tant, it must be anchored by conceptual understanding. For a great many
students, it is not.

Other aspects of the knowledge network are shortchanged as well, in-
cluding the presentation and teaching of the notation system for decimals,
fractions, and percents. Textbooks typically treat the notation system as some-
thing that is obvious and transparent and can simply be given by definition
at a lesson’s outset. Further, operations tend to be taught in isolation and
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divorced from meaning. Virtually no time is spent in relating the various
representations—decimals, fractions, percents—to each other.31

While these are all significant problems and oversights, however, there
are more basic problems with traditional instruction. The central problem
with most textbook instruction, many researchers agree,32  is the failure of
textbooks to provide a grounding for the major conceptual shift to multipli-
cative reasoning that is essential to mastering rational number. To support
this claim, let us look at how rational number is typically introduced in
traditional practice.

Pie Charts and a Part–Whole Interpretation of
Rational Numbers

Most of us learned fractions with the model of a pie chart, and for many
people, fractions remain inextricably linked to a picture of a partly shaded
shape. Instruction traditionally begins with the presentation of pictures of
circles (pies) and rectangles (cakes) that are partitioned and partially shaded.
First, students are asked to count the number of parts in the whole shape
and then the number of parts shaded. They then use these counts as the
basis for naming and symbolically representing fractions. They learn that the
top number, the numerator, always indicates how many pieces are shaded
and that the bottom number, the denominator, always tells how many pieces
there are in all. Next, using these same sorts of pictures (see Figure 7-3),
instruction continues with simple addition and subtraction operations: “Two
shaded 1/4 pieces (the bottom half of the circle) + 1 shaded 1/4 piece (the
top left piece of the circle) = 3 shaded 1/4 pieces or 3/4.”

From a psychological perspective, this introduction is sound because it
is based on students’ present knowledge and aligned with their experiences
both in and out of school. We know that students’ formal mathematics pro-
grams have been based on counting, and that from everyday experience,
students know about cutting equal pieces of pies and cakes. Thus, the act of
assessing partitioned regions is well within their experience.

From a mathematical point of view, the rationale for this introduction is

FIGURE 7-3
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also clear. Mathematically, this approach promotes an understanding of one
particular aspect of rational number—the way rational numbers indicate
parts of a whole. This part–whole subconstruct is one of the basic interpre-
tations of rational numbers.

However, this introduction is grounded in additive thinking. It rein-
forces the very concept that students must change to master rational num-
ber. Children tend to treat the individual parts that result from a partition as
discrete objects. The four pieces into which a pie is cut are just four pieces.
Although the representation does have the potential to bring out the multi-
plicative relations inherent in the numbers—considering the shaded parts in
relation to the whole—this is not what students naturally extract from the
situations presented given their strong preconceptions regarding additive
relationships.33

Recall that Wyatt, the fifth grader, asserted that 2/3 and 3/4 were the
“same sized” number, supporting his erroneous claim with reference to pie
charts. He explained that the picture showed they were both missing one
piece. His lack of focus on the different relations that are implied in these
two fractions is evident from his interpretation.

Alternative Instructional Approaches: Ratio and Sharing

For some time now, researchers have wondered whether alternative
instructional approaches can help students overcome this misunderstand-
ing. As Kieren34  points out, “. . . rather than relying on children’s well devel-
oped additive instincts we must find the intuitions and schemes that go
beyond those that support counting. Whole number understandings are care-
fully built over a number of years; now we must consider how rational
number understanding develops and is fostered.”

But what would such instruction look like? Over the last several years, a
number of innovative approaches have been developed that highlight the
multiplicative relations involved, a few of which are highlighted here. Kieren35

has developed a program for teaching fractions that is based on the multipli-
cative operations of splitting. As part of his approach he used paper folding
rather than pie charts as its primary problem situation. In this approach,
both the operator and measure subconstructs are highlighted. Confrey’s36 3-
year developmental curriculum uses a number of contexts for ratio, includ-
ing cooking, shadows, gears, and ramps.37 Streefland’s38 approach to teach-
ing fractions is also driven by an emphasis on ratio. His basic image is of
equal shares and quotients. In his procedure for teaching fractions, children
are presented with realistic situations in which they are asked to share a
quantity of something, such as chocolate bars or pancakes (e.g., five chil-
dren sharing two bars). To represent these situations, children use a notation
system that they devise themselves, which emphasizes proportional rather
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than additive relations. Mack’s39 approach is to engage the students in part–
whole activities as a starting point, and to ground these concepts in realistic
situations in which students are pressed to consider the multiplicative rela-
tions. Finally, Lamon40 has devised programs that address each of the
subconstructs separately. All of these programs and others developed by the
Rational Number Project have demonstrated a significant impact on the par-
ticipating students.

Below I present a different approach to teaching rational number that I
developed with my colleague Robbie Case. Our approach, shown through
controlled experimental trials to be effective in helping students in the fourth,
fifth, and sixth grades41  gain a strong initial grounding in the number system,
also highlights multiplicative understanding, with an additional focus on the
interrelations among fractions, decimals, and percents.42  While there is no
one best method or best set of learning activities for rational number,43  our
approach provides an opportunity to describe how instruction in rational
number can be built around the principles of How People Learn that are the
theme of this volume.

First, as will be elaborated, our curriculum is based on our analyses of
students’ prior understandings (Principle 1). Our instructional strategy is to
help students to further develop these informal understandings and then
integrate them into a developmentally sequenced set of activities designed
to help them develop a network of concepts and relations for rational num-
bers (Principle 2). Finally, as will be illustrated throughout our accounts of
the lessons, a central feature of this program is the fostering of a metacognitive
approach to rational number (Principle 3). By providing students with an
understanding of the interconnections among decimals, fractions, and per-
cents, our curriculum helps them develop the ability to make informed deci-
sions on how best to operate with rational numbers.

Pipes, Tubes, and Beakers: A New Approach to
Rational-Number Learning

Percents as a Starting Point

In our curriculum, rather than teaching fractions and decimals first, we
introduce percents—which we believe to be a “privileged” proportion in
that it only involves fractions of the base 100.44  We do this through students’
everyday understandings. We situate the initial learning of percent in linear
measurement contexts, in which students are challenged to consider the
relative lengths of different quantities. As will be shown below, our initial
activities direct students’ attention to ideas of relative amount and propor-
tion from the very beginning of their learning of rational number. For ex-
ample, we use beakers of water: “If I fill this beaker 50 percent full, approxi-
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mately where will the line be? Now fill this bigger beaker 50 percent full. Do
you notice that although they are both 50 percent full, there is more water in
this bigger one?” These ideas of percents and proportion serve as an anchor-
ing concept for the subsequent learning of decimals and fractions, and then
for an overall understanding of the number system as a whole.

Starting Point: Visual Proportional Estimation and
Halving and Doubling

Our starting point in developing our curriculum was to consider stu-
dents’ informal knowledge and the intuitions they have developed that could
serve as a foundation. (As has been shown many times in this chapter,
students have previous understandings and knowledge of mathematics that
are not productive for rational-number understanding.) To this end, we high-
lighted two kinds of understandings that students have generally developed
by this age. One is an ability to estimate proportions visually such as halves;45

the other is an ability to work with successive halving46  (see Box 7-2).

BOX 7-2 Students’ Informal Knowledge
Proportional Understandings

While we know that formal proportional reasoning is slow to develop47  it has none-
theless been shown that children from a very early age have a strong propensity
for making proportional evaluations that are nonnumerical and based on perceptual
cues. For example, young children have little difficulty perceiving narrow, upright
containers in proportional terms. Although they can see which of two such contain-
ers has more liquid in it in absolute terms, they can also see which has more in
proportional terms. That is to say, they can see which one is fuller.48

Halving and Doubling

The ability to do repeated halving is evident is students’ reasoning at this age. As
Confrey and Kieren49  point out, halving and doubling have their roots in a primitive
scheme that they call splitting. Splitting, they assert, is based on actions that are
purely multiplicative in nature and are separate from those of additive structures
and counting. Whereas in counting the actions are joining, annexing, and remov-
ing, in splitting the primitive action is creating simultaneous multiple versions of an
original by dividing symmetrically, growing, magnifying, and folding.
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Although one of these sets of understandings—proportional estimation—
is primarily visual and nonnumerical, while the other, halving and doubling,
is numeric, both have their grounding in multiplicative operations. It was
our proposal that if we could help students merge these separate kinds of
multiplicative understandings, we would allow them to construct a core
conceptual grounding for rational numbers.50

Our strategy from the beginning was to develop what we called a “bridg-
ing context”51  to help students first access and then integrate their knowl-
edge of visual proportions and their flexibility in working with halving
numbers. The context we chose was to have students work with percents
and linear measurement. As will be elaborated below, students were en-
gaged from the start of the instructional sequence in estimating propor-
tional relations based on length and in using their knowledge of halving to
compute simple percent quantities. In our view, the percent and measure-
ment context allowed students to access these initial kinds of understand-
ings and then integrate them in a natural fashion. We regarded the integra-
tion of initial intuitions and knowledge as a foundation for rational-number
learning.

Why Percent As a Starting Point?

While we found that starting with percent was useful for highlighting
proportionally, we also recognized that it was a significant departure from
traditional practice. Percent, known as the most difficult representation for
students, is usually introduced only after fractions and decimals. Several
considerations, however, led to this decision. First, with percents students
are always working with the denominator of 100. We therefore postpone the
problems that arise when students must compare or manipulate ratios with
different denominators. This allows students to concentrate on developing
their own procedures for comparison and calculation rather than requiring
them to struggle to master a complex set of algorithms or procedures for
working with different denominators.

Second, a further simplification at this beginning stage of learning is that
all percentages have a corresponding decimal or fractional equivalent that
can be relatively easy to determine (e.g., 40 percent = 0.40 or 0.4 = 40/100 or
4/10 or 2/5). By introducing percents first, we allow children to make their
preliminary conversions among the different rational-number representa-
tions in a direct and intuitive fashion while developing a general under-
standing of how the three representations are related.

Finally, children know a good deal about percents from their everyday
experiences.52  By beginning with percents rather than fractions or decimals,
we are able to capitalize on children’s preexisting knowledge of the mean-
ings of these numbers and the contexts in which they are important.53
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Curriculum Overview

The curriculum is divided into roughly three parts. First the students are
introduced to a single form of rational number—percent—using concrete
props that highlight linear measurement. After students have spent time
working with percents in many contexts, we present our next form of ratio-
nal number, the two-place decimal. We do this in the context of percent,
illustrating that a two-place decimal number is like the percent of the way
between two whole numbers. Finally, our focus turns to activities that pro-
mote comparing and ordering rational numbers and moving among deci-
mals and percents. Fractions are also taught at this stage in relation to per-
cents and decimals.54  The sections that follow provide details of many of the
activities we devised and include accounts of how fourth, fifth, and sixth
graders from our research classrooms worked through these activities. These
lessons are described in a fair amount of detail so that interested teachers
can try some of these activities with their own students. I also include these
details to illustrate the strategies that were used to foster students’ pride and
investment in and willingness to monitor their work.

Lessons Part 1: Introduction to Percents

Percents in Everyday Life

Imagine a typical fourth-, fifth-, or sixth-grade class, in which the stu-
dents have received no formal instruction in percent. Thus each time we
implemented our curriculum, we began the lessons with discussions that
probed the students’ everyday knowledge of this topic. These questions
generated a great number of responses in each of our research classrooms.
Not only were the students able to volunteer a number of different contexts
in which percents appear (e.g., siblings’ school marks, price reductions in
stores, and taxes on restaurant bills), but they also had a strong qualitative
understanding of what different numerical values “mean.” For example, stu-
dents commented that 100 percent means “everything,” 99 percent means
“almost everything,” 50 percent means “exactly half,” and 1 percent means
“almost nothing.” As one student remarked, “You know if you are on a diet
you should drink 1 percent milk instead of 4 percent milk.”

Pipes and Tubes: A Representation for Fullness

To further explore students’ intuitions and informal understandings, we
presented them with a set of props specifically designed for the lessons. The
set included a series of black drainage pipes (of varying heights) with white
venting tubes55  on the outside that could be raised or lowered, simulating
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the action of water filling them to different levels (see Figures 7-4a and
7-4b). To discover more about the students’ understanding of percents and
proportion, we asked them to consider how they would use these props to
teach percent to a younger child. Again the students were full of ideas, many
of which are central to the knowledge network for rational number.

First students demonstrated their understanding of the unit whole, as
mentioned earlier, a concept that is often elusive in traditional instruction:
“Each of these pipes is 100 percent.” They also demonstrated understanding
of the part–whole construct: “If you raise the tube up here [pointing to three-
quarters of the length of the pipe], then the part that is covered is 75 percent,
and the part that is left over is 25 percent.” Students also naturally displayed
their sense of rational number as operator: “This is 50 percent of the tube,
and if we cut it in half again it is 25 percent.” In addition, students demon-
strated insights for proportions: “50 percent on this bigger pipe is bigger
than 50 percent on this little pipe, but they’re both still 50 percent.” The idea
of rational number as a measure was also embedded in the students’ reason-
ing! “I know this is about 75 percent covered, because this first bit is 25
percent, and if you move the 25 percent piece along the tube three times,
you get 75 percent.” Clearly, they had strong intuitions about the general
properties and interpretations of rational numbers in their informal under-
standings of percent.

We also were interested to see whether the use of these props could
generate ideas about another difficult concept—the elusive idea of percents
greater than 100.56  Sam, an eager student, attempted to demonstrate this to
his classmates. He first held up a tall pipe (80 cm): “We know that this whole
pipe is 100 percent.” Next, he picked up a second, shorter pipe (20 cm) and
stood it beside the taller one, estimating that it was about 25 percent of the
taller pipe. To confirm this conjecture, he moved the smaller pipe along the
taller one, noting that it fit exactly four times. “Okay,” he declared, “this is
definitely 25 percent of the longer pipe. So, if you join the two [pipes] to-
gether like this [laying both pipes on the ground and placing the shorter one
end to end with the larger], this new pipe is 125 percent of the first one.”

Percents on Number Lines: More Estimation

In addition to drainage pipes, we included activities with laminated,
meter-long number lines calibrated in centimeters to provide students with
another way of visualizing percent (see Figures 7-5a and 7-5b). For example,
we incorporated exercises in which children went on “percent walks.” Here
the number lines, which came to be known as “sidewalks,” were lined up
end to end on the classroom floor with small gaps between them. Students
challenged each other to walk a given distance (e.g., “Can you please walk
70 percent of the first sidewalk? Now, how about 3 whole sidewalks and 65
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FIGURE 7-4a

FIGURE 7-4b
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FIGURE 7-5a

FIGURE 7-5b
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percent of the fourth?”). The number-line activities were used to consolidate
percent understandings and to extend the linear measurement context.

Computing with Percent

Next we introduced beakers of water with varying degrees of fullness
(see Figures 7-6a and 7-6b). In keeping with the previous lessons, the stu-
dents used percent terminology to estimate the “fullness” of these contain-
ers: “Approximately what percent of this beaker do you think is full?” or
“How high will the liquid rise when it is 25 percent full?” As it turned out, the
children’s natural tendency when confronted with fullness problems was to
use a repeated halving strategy. That is, they determined where a line repre-
senting 50 percent would go on the cylinder, then 25 percent, then 12 1/2
percent, and so on. These activities with fullness estimates led naturally to a
focus on computation and measurement. For example, if it was discovered
on measuring a beaker that it was 8 cm tall, then 4 cm from the bottom was
the 50 percent point, and 2 cm was the 25 percent point. The halving strat-
egies exemplified in these calculations became the basis for the computa-
tions the students tackled next.

Invented Procedures

Despite the move to calculating, the children were not given any stan-
dard rules to perform these operations, and so they naturally employed a
series of strategies of their own invention using halves, quarters, and eighths
as benchmarks to guide their calculations. For example, to calculate 75 per-
cent of the length of a 60 cm desktop, the students typically considered this
task in a series of steps: Step 1, find half, and then build up as necessary (50
percent of 60 = 30); Step 2, use a halving strategy to find 25 percent of 60,
and if 50 percent of 60 = 30, then 25 percent of 60 = 15); and Step 3, sum the
parts (30 + 15 = 45).

String Challenges: Guessing Mystery Objects

String measurement activities also proved to be an excellent way of
considering percent quantities and calculating percentages using benchmarks.
A string challenge that became a regular feature of classroom life was what
we called “The Mystery Object Challenge.” In this activity, which often started
the lessons, the teacher held up a piece of string that was cut to the percent
of the length of a certain object in the room. The routine went something
like this:
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FIGURE 7-6a

FIGURE 7-6b
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Teacher I have here a length of string that is 25 percent
of the height of a mystery object in the class-
room. Any ideas as to what the mystery object
might be?

Student I think that it is the desktop or maybe the
poster on the wall.

Teacher How did you figure that out?

Student Well, I just imagined moving the string along
the desk four times and I think it works. [The
student, then, carefully moving the string
along the desk, was able to confirm her
assertion.]

Since these kinds of challenges were so popular with the children, we
went on to invite pairs of students to find their own mystery object to chal-
lenge their classmates. Students went around the room, measured their cho-
sen object, and then cut a piece of string to a percent of the total. As a
culminating activity, the students made what they called “percent families”
of strings using the length of their mystery object as a base. Each pair of
children was given a large piece of cardboard on which they pasted lengths
of string to represent the benchmarks of 100 percent, 50 percent, 25 percent,
75 percent, and 12 1/2 percent of the height of the object. These activities
provided opportunities for calculating percents (e.g., if the object was 70 cm
long, students would have to calculate and then measure and cut strings of
50 percent lengths, or 35 cm; of 25 percent lengths, or 17.5 cm; of 75 percent
lengths, or 52.5 cm; etc.). Furthermore, the visual displays thus produced
proved helpful in reinforcing the idea of proportion for the students. As
students often remarked, “Our string lengths are different even though all of
our percents are the same.”

Summary of Lessons Part 1

The first phase of the lessons began with estimations and then calcula-
tions of percent quantities. These initial activities were all presented in the
context of linear measurement of our specially designed pipes and tubes,
beakers of water, string, and number lines. Students were not given formal
instruction in specific calculating procedures; rather, they naturally employed
procedures of their own that involved percent benchmarks and repeated
halving. While percent was the only form of rational number that we offi-
cially introduced at this point, students often referred to fractions when
working on these initial activities. At the beginning, all of the children natu-
rally used the term “one-half” interchangeably with “fifty percent,” and most
knew that 25 percent (the next split) could be expressed as “one-quarter.”
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We also told them that the 12 1/2 percent split was called “one-eighth” and
showed them the fraction symbol 1/8.

Although the props were enjoyable to the students, they also served an
important function. The activities consistently helped students integrate their
sense of visual proportion with their ability to do repeated halving. Our goal
in all of these initial activities was to create situations in which these two
kinds of informal understandings could become linked and serve as a foun-
dation for the students’ further learning of this number system.

Lessons Part 2: Introduction of Decimals

While the first phase of the lessons was designed to extend and elabo-
rate students’ knowledge of percent, the next phase moved the students to a
new developmental level. At this point in our instructional program, we
introduced students to a new form of rational number—the two-place deci-
mal. The initial decimal lessons also had a strong focus on measurement and
proportion.

Research has confirmed that a solid conceptual grounding in decimal
numbers is difficult for students to achieve.57  The similarities between the
symbol systems for decimals and whole numbers lead to a number of mis-
conceptions and error types.58  Grasping the proportional nature of decimals
is particularly challenging. In our program, we made a direct link from per-
cents—which by now the students thought of in proportional terms—to
decimals. In fact, we told the students that since they were now “percent
experts,” they could become “decimal experts.” What we did with the stu-
dents at this point was show that a two-place decimal number represents a
percentage of the way between two adjacent whole numbers. In this way of
thinking, a decimal represents an intermediate distance between two num-
bers (e.g., 5.25 is a distance that is 25 percent of the way between 5 and 6).

Decimals and Stopwatches

To begin the lessons in decimals, the students were given LCD stop-
watches with screens that displayed seconds and hundredths of seconds
(the latter indicated by two small digits to the right of the numbers; see
Figure 7-7). The students were asked to consider what the two “small num-
bers” might mean and how these small numbers related to the bigger num-
bers to the left (seconds). After experimenting with the stopwatches, the
children noted that there were 100 of these small time units in 1 second.
With this observation, they made the connection to percents: “It’s like they
are percents of a second.” After considerable discussion of what to name
these small time intervals (e.g., some suggested that they were millisec-
onds), the students came to refer to these hundredths of seconds as
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“centiseconds,” a quantity they understood to be the percentage of time that
had passed between any 2 whole seconds. We continued our work with
decimals and stopwatches, with a focus on ordering numbers.

Magnitude and Order in Decimal Numbers

To illuminate the difficult concepts of magnitude and order (recall Wyatt’s
assertion that 2/3 = 3/4 and others’ comments that 0.2 is smaller than 0.059),
we devised many activities to help the students work with ordering deci-
mals. The first of these activities was the “Stop-Start Challenge.” In this exer-
cise, students attempted to start and stop the watch as quickly as possible,
several times in succession. After discussion, they learned to record their
times as decimals. So, for example, 20 centiseconds was written as .20, 9
centiseconds as 0.09, and so on. Next, the students compared their personal
quickest reaction time with that of their classmates, then ordered the times
from quickest to slowest. In this exercise, the students could learn from their
experience of trying to get the quickest time that, for example, 0.09 is a
smaller number than .10 and eventually realize that .09 is smaller than .1.
Another stopwatch game designed to actively engage students in issues of
magnitude was “Stop the Watch Between”: “Can you stop the watch be-
tween 0.45 and 0.50?” We also explored decimals through the laminated

FIGURE 7-7
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number lines, whereby students were asked to indicate parts of 100 using
decimal representations: “Please put a mark where 0.09 is on this number
line.”

Summary of Lessons Part 2

In this second level of the instructional program, the students were in-
troduced to decimals for the first time. Students worked on many activities
that helped them first understand how decimals and percents are related
and then learn how to represent decimals symbolically. As the decimal les-
sons proceeded, we moved on to activities designed to help students to
consider and reflect on magnitude. Thus the final activities included situa-
tions in which students engaged in comparing and ordering decimals. This
level of the program was the first step in students’ learning to translate
among the representations of rational number and gain fluency with differ-
ent kinds of operations.

Lessons Part 3: Fractions and Mixed Representations of
Rational Numbers

Fractions First: Equivalencies

As noted earlier, although the curriculum began with percents as the
initial representation of rational numbers, we found that the students made
many references to fractions. Now, at this final level of the program, our
goal was to give students a chance to work with fractions more formally and
then provide them with opportunities to translate flexibly among fractions,
decimals, and percents. In a first series of activities, students worked on
tasks in which they were asked to represent a fraction in as many ways as
they could. Thus, for example, if their assignment was to show 3/4, students
typically responded by presenting fraction equivalencies, such as 6/8 and
75/100. Students were also asked to compose “word problems” that incor-
porated fractions and were in turn given to their classmates to solve. An-
other activity that students enjoyed a great deal was challenging others to
find the answers to equations of their own invention with questions such as
“How much more to make one whole? (for example, 1/8 + 1/2 + 1/16 + 1/4
+ ? = 1),” or “Is the following equation true or false? (1/4 + 1/8 + 5/10 + 1/8
= 1).” The reasoning of a fifth grader as he attempted to answer this question
is typical of the reasoning of many of his classmates: “Well, 5/10 is 1/2. If
you add 1/4 that makes three-quarters, so you need another quarter to make
a whole and you have two-eighths, so it does equal one whole and so it is
true!”
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While students initially used fractions in these equations, they soon in-
corporated the other representations in challenges they composed. For ex-
ample, one student posed the following question: “Here is my equation: 1/
8 + 12.5 percent + 1/4 + .25 percent + ? = 1. How much more to make one
whole?” To discover the missing quantity, the students’ reasoning (anchored
in percents and decimals) sounded something like this: “Well 12 1/2 (1/8)
and 12 1/2 is 25 percent and another 25 percent (1/4) makes 50 percent and
another .25 makes 75 percent so you would need another 25 percent to
make a whole.”

Crack the Code

The students carried out further work on conversions with the LCD
stopwatches used earlier in the program. In a favorite game called “Crack
the Code,” students moved between representations of rational numbers as
they were challenged to stop the watch at the decimal equivalent of differ-
ent fractions and percents. For example, given a relatively simple secret
code, e.g., 2/5, students stopped the watch at close to 40 centiseconds or
0.40 seconds as possible. Similarly with slightly more complex secret codes,
such as “1/4 + 10 percent,” students had to stop the watch at .35 seconds.
This allowed them to increase their understanding of the possibility of fluid
movement between representations.

Card Games

In one set of lessons, I gave the students a set of specially designed
cards depicting various representations of fractions, decimals, and percents
(e.g., there was a 3/8 card, a card with .375, and a card that read 37 1/2
percent). The students used the cards to design games that challenged their
classmates to make comparisons among and between representations.

In the first game, the leader dealt the cards to the students, who in turn
placed one card from their hand face up on the classroom floor. The chal-
lenge was to place the cards in order of increasing quantity. Students who
disagreed with the placement of a particular card challenged the student
who had gone before. This led to a great deal of debate. Sarah, for instance,
had a card on which was written 5/9. This was a fraction that the students
had not previously encountered in their lessons, and Sarah was not sure
where to place it. Finally, she put the 5/9 card before a card on which was
50 percent, thus revealing that she thought that 5/9 was less than 50 percent.
“That can’t be right,” asserted Jules. “In order to get 1/2 (50 percent) you
would have to have 4 point 5 ninths and that is less than 5/9 so, 5/9 is larger
than 1/2.” The game ended when the children reached consensus and the
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teacher confirmed that all of the cards had been ordered correctly. The cards
took up the entire length of the classroom by the time every student had
placed his or her cards on the floor!

A second card game employing the same deck of cards, invented by a
pair of students, had as its goal not only the comparison of decimals, frac-
tions, and percents in mixed representations, but also the addition and sub-
traction of the differences between these numbers. This game again used
the LCD stopwatches introduced earlier in the lessons. The two students
who invented the game, Claire and Maggie, based it on the popular card
game War. The students dealt the whole deck into two “hands,” then simul-
taneously turned over the top card. The winner’s score is increased by the
difference in value of the two cards. In one turn, for example, Maggie’s card
had .20 written on it and Clare’s had 1/8. What happened next is transcribed
from the videotape of their play:

Claire OK, now we have to figure out who has more.

Maggie I do. ‘Cause you only have 121/2 percent [one-
eighth] but I have 20 percent. So mine is more.

Claire Yeah, you’re right; Ok I have to write down
your score. . . . Hum . . .

So that’s 20 percent take away 121/2 percent so
that’s 7 1/2 [percent]. [Claire then took a pencil,
and finding Maggie’s place in the score
column, wrote .075.]

At this point in the lessons, most of the students were comfortable think-
ing about percents, decimals, and fractions together. In fact, they assumed a
shorthand way of speaking about quantities as they translated from fraction
to percent. To illustrate this, I present a short excerpt from a conversation
held by a visiting teacher who had watched the game the two girls had
started and asked them to explain their reasoning.

Teacher I was interested to know how you figured out
which of the numbers is more, .20 or one-
eighth. First of all, how did you know that one-
eighth is equal to 12 1/2 percent?

Maggie Ok, it is like this. One-eighth is half of one-
fourth, and one-fourth is 25 percent. So, half of
that is 12 1/2 percent.

Teacher Well, you certainly know percents very well.
But what about decimals? Do you know what
12 1/2 percent is as a decimal?
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Claire: You see, 12 1/2 percent is like point 12 and a
half and that’s the same as point 12 point 5,
because the point five is like half.

Maggie: Yeah, but in decimals you have to say it’s really
point 125.

Summary of Lessons Part 3

In the third part of the curriculum, we focused primarily on students’
uses of mixed representations. We began with some formal activities with
fractions and equivalencies, including tasks in which students had to work
with and devise lengthy equations. We also had the students make up their
own games and challenges to help them gain more practice in this kind of
flexible movement from one operation to another. One of our primary goals
here was to provide students with habits of mind regarding multiple repre-
sentations that will be with them throughout their learning and lay the foun-
dations for their ability to solve mathematical problems.

Results from Our Studies

To date, variations of our curriculum have been implemented and as-
sessed in four experimental classrooms. From the very first lessons, students
demonstrated and used their everyday knowledge of percents and worked
successfully with percents in situations that called on their understanding of
proportion. Our particular format also allowed students to express their in-
formal knowledge of other concepts and meanings that are central to ratio-
nal number understanding. Recall that when working with the pipes and
tubes and the beakers of water, students successfully incorporated ideas of
the rational-number subconstructs of measure, operator, and ratio. What
was also evident was that they had a strong understanding of the unit whole
and its transformations. Similarly, when decimals were introduced in the
context of stopwatches, the students readily made sense of this new repre-
sentation and were able to perform a variety of computations. Finally, by the
end of the experimental sessions, the students had learned a flexible ap-
proach to translating among the representations of rational numbers using
familiar benchmarks and halving and doubling as a vehicle of movement.

While the class as a whole appeared to be engaged and motivated by
the lessons, we needed to look at the improvement made by individual
students at the end of the experimental intervention. We were also inter-
ested to see how the performance of students in the experimental group
compared with that of students who had traditional classroom instruction.
To these ends, we assessed the experimental students on a variety of tasks
before and after the course of instruction and administered these same tasks
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to students from classrooms in which textbook instruction had been pro-
vided.59

Briefly, we found that students in the experimental group had improved
significantly.60  Further, the scores that they obtained after instruction were
often higher than those of children who had received instruction in conven-
tional classrooms and who were many years older. Not only were students
in the experimental classrooms able to answer more questions than did the
“textbook” students, but the quality of their answers was better. Specifically,
the experimental group made more frequent reference to proportional con-
cepts in justifying their answers than did the students in the nonexperimental
group. What follows are some examples of changes in students’ reasoning
following participation in the experimental program, consisting of selections
from interviews that were conducted following the conclusion of the experi-
mental classes.

Children’s Thinking After Instruction

Let us return to the question posed to Wyatt at the start of the program
(and excerpted at the beginning of this chapter) and look at the responses of
two students, Julie and Andy, whose reasoning was typical of that of the
other students at the end of the program.

Interviewer Here are three numbers: 2/3, 0.5, and 3/4.
Could you please put these numbers in order
from smallest to largest?

Julie Well, let’s see. Point 5 is the smallest because
3/4 is 75 percent. I am not exactly sure what 2/3
is as a percent but it is definitely more than a
half. Can I use this paper to try it out? [Julie
took two pieces of paper. Holding them
horizontally, she first folded one in four equal
parts and then pointed to three sections,
remarking that this was 3/4. Next she folded
the second sheet in three pieces and then lined
the two pages up together to compare the
differences between the 2/3 and 3/4]. So 3/4 is
the biggest.

Andy responded to this same question differently.

Andy It’s easy: .5 is 50 percent and 2/3 is 66 percent,
and so it goes first .5 then 2/3 and then 3/4
cause that’s 75 percent.
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As can be seen, both Andy and Julie correctly ordered the numbers
using their knowledge of percent as a basis for their reasoning. Andy, a
high-achieving student, simply converted these quantities to percents. Julie,
identified as a lower achiever, used paper folding as a way of finding the
bigger fraction. Both used multiplicative solutions, one concrete and one
abstract.

Another example taken from posttest interviews illustrates not only the
students’ understanding of order and magnitude, but also their understand-
ing of the density property of rational numbers—that there is an infinite
number of numbers between any two rational numbers.

Interviewer Can any fractions fit between one-fourth and
two-fourths? And if so, can you name one?

Maggie Well, I know that one-quarter is 25 percent and
so two quarters is a half, so that’s 50 percent.
So, there’s tons of numbers between them like
40 percent. So that would be 40/100.

Jed One-quarter is the same as 2/8 and 2/4 is the
same as 4/8, so the answer is three-eighths.

The above answers are in sharp contrast to those of children before our
instruction or those from traditional classrooms, the majority of whom claimed
no numbers could come between 1/4 and 2/4.

In a final example, students were asked to compute a percent of a given
quantity—65 percent of 160. Although this type of computation was per-
formed regularly in our classrooms, 65 percent of 160 was a significantly
more difficult calculation than those the students had typically encountered
in their lessons. Furthermore, this item required that students work with 10
percent as well as with the familiar benchmarks (25 percent, 50 percent, 75
percent, and 12 1/2 percent) that served as a basis for most of their class-
room work. Despite these differences, students found ways to solve this
difficult problem.

Interviewer What is 65 percent of 160?

Sascha Okay, 50 percent of 160 is 80. Half of 80 is 40,
so that is 25 percent. So if you add 80 and 40
you get 120. But that (120) is too much be-
cause that’s 75 percent. So you need to minus
10 percent (of 160) and that’s 16. So, 120 take
away 16 is 104.

Neelam The answer is 104. First I did 50 percent, which
was 80.
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Then I did 10 percent of 160, which is 16. Then
I did 5 percent, which was 8. I added them [16
+ 8] to get 24, and added that to 80 to get 104.

For anyone who has seen a colleague pause when asked to compute a
percentage, as one must, say, to calculate a tip, the ease with which these
students worked through these problems is striking.

Knowledge Network

These are only a few examples from the posttest interviews that illus-
trate the kinds of new understandings and interconnections students had
been able to develop through their participation in the curriculum. Overall,
our analyses of the children’s thinking revealed that students had gained (1)
an overall understanding of the number system, as illustrated by their ability
to use the representations of decimals, fractions, and percents interchange-
ably; (2) an appreciation of the magnitude of rational numbers, as seen in
their ability to compare and order numbers within this system; (3) an under-
standing of the proportional- and ratio-based constructs of this domain, which
underpins their facility with equivalencies; (4) an understanding of percent
as an operator, as is evident in their ability to invent a variety of solution
strategies for calculating with these numbers; and (5) general confidence
and fluency in their ability to think about the domain using the benchmark
values they had learned, which is a hallmark of number sense.

Our research is still in an early stage. We will continue to pursue many
questions, including the potential limitations of successive halving as a way
of operating with rational numbers, downplaying of the important under-
standings associated with the quotient subconstruct, as well as a limited
view of fractions. Furthermore, we need to learn more about how students
who have been introduced to rational numbers in this way will proceed with
their ongoing learning of mathematics.

While we acknowledge that these questions have not yet been answered,
we believe certain elements of our program contributed to the students’
learning, elements that may have implications for other rational-number
curricula. First, our program began with percents, thus permitting children
to take advantage of their qualitative understanding of proportions and com-
bine that understanding with their knowledge of the numbers from 1 to 100,
while avoiding (or at least postponing) the problems presented by fractions.
Second, we used linear measurement as a way of promoting the multiplica-
tive ideas of relative quantities and fullness. Finally, our program empha-
sized benchmark values—of halves, quarters, eighths, etc.—for moving among
equivalencies of percents, decimals, and fractions, which allowed students
to be flexible and develop confidence in relying on their own procedures
for problem solving.
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CONCLUSION: HOW STUDENTS LEARN
RATIONAL NUMBER

Principle #1: Prior Understandings

For years mathematics researchers have focused their attention on un-
derstanding the complexities of this number system and how to facilitate
students’ learning of the system. One well-established insight is that rational-
number teaching focused on pie charts and part–whole understandings rein-
forces the primary problem students confront in learning rational number:
the dominance of whole-number reasoning. One response is to place the
multiplicative ideas of relative quantity, ratio, and proportion at the center of
instruction.

However, our curriculum also builds on our theory and research find-
ings pointing to the knowledge students typically bring to the study of ratio-
nal number that can serve as a foundation for conceptual change. Two
separate kinds of understandings that 10-year-olds typically possess have a
multiplicative orientation. One of these is visual proportional estimation; for
children, this understanding usually functions independently of numbers, at
least initially. The second important kind of understanding is the numerical
procedure for repeated halving. By strengthening and merging these two
understandings, students can build a solid foundation for working flexibly
with rational numbers.

Our initial instructional activities are designed to elicit these informal
understandings and to provide instructional contexts that bring them to-
gether. We believe this coordination produces a new interlinked structure
that serves both as foundation for the initial learning of rational number and
subsequently as the basis on which to build a networked understanding of
this domain.

Principle #2: Network of Concepts

At the beginning of this chapter, I outlined the complex set of core
concepts, representations, and operations students need to acquire to gain
an initial grounding in the rational-number system. As indicated above, the
central conceptual challenge for students is to master proportion, a concept
grounded in multiplicative reasoning. Our instructional strategy was to de-
sign a learning sequence that allowed students to first work with percents
and proportion in linear measurement and next work with decimals and
fractions. Extensive practice is incorporated to assure that students become
fluent in translating between different forms of rational number. Our inten-
tion was to create a percent measurement structure that would become a
central network to which all subsequent mathematical learning could be
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linked. This design is significantly different from traditional instruction in
rational number, in which topics are taught separately.

Principle #3: Metacognition

In this chapter, I have not made detailed reference to students’ develop-
ing metacognition. Yet the fostering of metacognition is in fact central to our
curriculum. First, as the reader may have noted, we regularly engaged the
students in whole-group discussions in which they were asked to explain
their reasoning and share invented procedures with their classmates. We
also designed the lessons so that students worked in small groups to col-
laborate in solving problems and constructing materials; we thereby pro-
vided students with a forum to express and refine their developing under-
standings. There were also many opportunities for students to consider how
they would teach rational number to others, either younger students or their
own classmates, by designing their own games and producing teaching plans
for how these new concepts could be taught. In all these ways, we allowed
students to reflect on their own learning and to consider what it meant for
them and others to develop an understanding of rational number. Finally,
we fostered metacognition in our program through the overall design and
goals of the experimental curriculum, with its focus on interconnections and
multiple representations. This focus, I believe, provided students with an
overview of the number system as a whole and thus allowed them to make
informed decisions on how best to operate with rational numbers.

Final Words

I conclude this chapter with an interchange, recorded verbatim, be-
tween a fourth-grade student and a researcher. Zach, the fourth grader, was
being interviewed by the researcher as part of a posttest assessment. The
conversation began when Zach had completed two pages of the six-page
posttest and remarked to the interviewer, “I have just done 1/3 of the test;...that
is 33.3 percent.” When he finished the third page, he noted, “Now I have
finished 1/2 or 50 percent of the test.” On completing the fourth page he
remarked, “Okay, so I have now done 2/3 of the test, which is the same as
66 percent.” When he had completed the penultimate page, he wondered
out loud what the equivalent percentage was for 5/6: “Okay, let’s see; it has
got to be over 66.6 percent and it is also more than 75 percent. I’d say that
it is about 80 percent....No, wait; it can’t be 80 percent because that is 4/5
and this [5/6] is more than 4/5. It is 1/2 plus 1/3…so it is 50 percent plus 33.3
percent, 83.3 percent. So I am 83.3 percent finished.”

This exchange illustrates the kind of metacognitive capability that our
curriculum is intended to develop. First, Zach posed his own questions,
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unprompted. Further, he did not expect that the question had to be an-
swered by the teacher. Rather, he was confident that he had the tools, ideas,
and concepts that would help him navigate his way to the answer. We also
see that Zach rigorously assessed the reasonableness of his answers and that
he used his knowledge of translating among the various representations to
help him solve the problem. I conclude with this charming vignette as an
illustration of the potential support our curriculum appears to offer to stu-
dents beginning their learning of rational number.

Students then go on to learn algorithms that allow them to calculate a
number like 83.3 percent from 5/

6
 efficiently. But the foundation in math-

ematical reasoning that students like Zach possess allow them to use those
algorithms with understanding to solve problems when an algorithm has
been forgotten and to double check their answers using multiple methods.
The confidence created when a student’s mathematical reasoning is secure
bodes well for future mathematics learning.
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8

Teaching and Learning Functions
Mindy Kalchman and Kenneth R. Koedinger

This chapter focuses on teaching and learning mathematical functions.1

Functions are all around us, though students do not always realize this. For
example, a functional relationship between quantities is at play when we
are paying for gasoline by the gallon or fruit by the pound. We need func-
tions for financial plans so we can calculate such things as accrued income
and interest. Functions are important as well to interpretations of local and
world demographics and population growth, which are critical for economic
planning and development. Functions are even found in such familiar set-
tings as baseball statistics and metric conversions.

Algebraic tools allow us to express these functional relationships very
efficiently; find the value of one thing (such as the gas price) when we know
the value of the other (the number of gallons); and display a relationship
visually in a way that allows us to quickly grasp the direction, magnitude,
and rate of change in one variable over a range of values of the other. For
simple problems such as determining gas prices, students’ existing knowl-
edge of multiplication will usually allow them to calculate the cost for a
specific amount of gas once they know the price per gallon (say, $2) with no
problem. Students know that 2 gallons cost $4, 3 gallons cost $6, 4 gallons
cost $8, and so on. While we can list each set of values, it is very efficient to
say that for all values in gallons (which we call x by convention), the total
cost (which we call y by convention), is equal to 2x. Writing y = 2x is a
simple way of saying a great deal.

As functional relationships become more complex, as in the growth of a
population or the accumulation of interest over time, solutions are not so
easily calculated because the base changes each period. In these situations,
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algebraic tools allow highly complex problems to be solved and displayed
in a way that provides a powerful image of change over time.

Many students would be more than a little surprised at this description.
Few students view algebra as a powerful toolkit that allows them to solve
complex problems much more easily. Rather, they regard the algebra itself
as the problem, and the toolkit as hopelessly complex. This result is not
surprising given that algebra is often taught in ways that violate all three
principles of learning set forth in How People Learn and highlighted in this
volume.

The first principle suggests the importance of building new knowledge
on the foundation of students’ existing knowledge and understanding. Be-
cause students have many encounters with functional relationships in their
everyday lives, they bring a great deal of relevant knowledge to the class-
room. That knowledge can help students reason carefully through algebra
problems. Box 8-1 suggests that a problem described in its everyday mani-
festation can be solved by many more students than the same problem
presented only as a mathematical equation. Yet if the existing mathematics
understandings students bring to the classroom are not linked to formal
algebra learning, they will not be available to support new learning.

The second principle of How People Learn argues that students need a
strong conceptual understanding of function as well as procedural fluency.
The new and very central concept introduced with functions is that of a
dependent relationship: the value of one thing depends on, is determined
by, or is a function of another. The kinds of problems we are dealing with
no longer are focused on determining a specific value (the cost of 5 gallons
of gas). They are now focused on the rule or expression that tells us how
one thing (cost) is related to another (amount of gas). A “function” is for-
mally defined in mathematics as “a set of ordered pairs of numbers (x, y)
such that to each value of the first variable (x) there corresponds a unique
value of the second variable (y).”2  Such a definition, while true, does not
signal to students that they are beginning to learn about a new class of
problems in which the value of one thing is determined by the value of
another, and the rule that tells them how they are related.

Within mathematics education, function has come to have a broader
interpretation that refers not only to the formal definition, but also to the
multiple ways in which functions can be written and described.3  Common
ways of describing functions include tables, graphs, algebraic symbols, words,
and problem situations. Each of these representations describes how the
value of one variable is determined by the value of another. For instance, in
a verbal problem situation such as “you get two dollars for every kilometer
you walk in a walkathon,” the dollars earned depend on, are determined by,
or are a function of the distance walked. Conceptually, students need to
understand that these are different ways of describing the same relationship.
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Good instruction is not just about developing students’ facility with per-
forming various procedures, such as finding the value of y given x or creat-
ing a graph given an equation. Instruction should also help students de-
velop a conceptual understanding of function, the ability to represent a
function in a variety of ways, and fluency in moving among multiple repre-
sentations of functions. The slope of the line as represented in an equation,
for example, should have a “meaning” in the verbal description of the rela-
tionship between two variables, as well as a visual representation on a graph.

The third principle of How People Learn suggests the importance of
students’ engaging in metacognitive processes, monitoring their understand-
ing as they go. Because mathematical relationships are generalized in alge-
bra, students must operate at a higher level of abstraction than is typical of
the mathematics they have generally encountered previously. At all levels of
mathematics, students need to be engaged in monitoring their problem solv-
ing and reflecting on their solutions and strategies. But the metacognitive
engagement is particularly important as mathematics becomes more abstract,
because students will have few clues even when a solution has gone terribly
awry if they are not actively engaged in sense making.

When students’ conceptual understanding and metacognitive monitor-
ing are weak, their efforts to solve even fairly simple algebra problems can,
and often do, fail. Consider the problem in Figure 8-1a. How might students
approach and respond to this problem? What graph-reading and table-build-
ing skills are required? Are such skills sufficient for a correct solution? If
students lack a conceptual understanding of linear function, what errors
might they make? Figure 8-1b shows an example student solution.

What skills does this student exhibit? What does this student understand
and not understand about functions? This student has shown that he knows
how to construct a table of values and knows how to record in that table
coordinate points he has determined to be on the graph. He also clearly
recalls that an algorithm for finding the slope of the function is dividing the
change in y(∆y) by the change in x(∆x). There are, however, significant
problems with this solution that reveal this student’s weak conceptual un-
derstanding of functions.

Problem: Make a table of values that would produce the function
seen on page 356.

First, and most superficially, the student (likely carelessly) mislabeled
the coordinate for the y-intercept (0, 3) rather than (0, –3). This led him to
make an error in calculating ∆y by subtracting 0 from 3 rather than from –3.
In so doing, he arrived at a value for the slope of the function that was
negative—an impossible solution given that the graph is of an increasing
linear function. This slip, by itself, is of less concern than the fact that the
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BOX 8-1 Linking Formal Mathematical Understanding to Informal
Reasoning

Which of these problems is most difficult for a beginning algebra
student?

Story Problem

When Ted got home from his waiter job, he multiplied his hourly wage by
the 6 hours he worked that day. Then he added the $66 he made in tips
and found he had earned $81.90. How much does Ted make per hour?

Word Problem

Starting with some number, if I multiply it by 6 and then add 66, I get 81.9.
What number did I start with?

Equation

Solve for x:
x * 6 + 66 = 81.90

Most teachers and researchers predict that students will have more diffi-
culty correctly solving the story or word problem than the equation.4  They
might explain this expectation by saying that a student needs to read the
verbal problems (story and word) and then translate them into the equa-
tion. In fact, research investigating urban high school students’ perfor-
mance on such problems found that on average, they scored 66 percent
on the story problem, 62 percent on the word problem, and only 43 per-
cent on the equation.5  In other words, students were more likely to solve
the verbal problems correctly than the equation. Investigating students’
written work helps explain why.

Students often solved the verbal problems without using the equa-
tion. For instance, some students used a generate-and-test strategy: They
estimated a value for the hourly rate (e.g., $4/hour), computed the corre-
sponding pay (e.g., $90), compared it against the given value ($81.90),
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and repeated as needed. Other students used a more efficient unwind or
working backwards strategy. They started with the final value of 81.9 and
subtracted 66 to undo the last step of adding 66. Then they took the
resulting 15.9 and divided by 6 to undo the first step of multiplying by 6.
These strategies made the verbal problems easier than expected. But
why were the equations difficult for students? Although experts in alge-
bra may believe no reading is involved in equation solving, students do in
fact need to learn how to read equations. The majority of student errors
on equations can be attributed to difficulties in correctly comprehending
the meaning of the equation.6  In the above equation, for example, many
students added 6 and 66, but no student did so on the verbal problems.

Besides providing some insight into how students think about alge-
braic problem solving, these studies illustrate how experts in an area such
as algebra may have an “expert blind spot” for learning challenges begin-
ners may experience. An expert blind spot occurs when someone skilled
in an area overestimates the ease of learning its formalisms or jargon and
underestimates learners’ informal understanding of its key ideas. As a
result, too little attention is paid to linking formal mathematical under-
standing to informal reasoning. Looking closely at students’ work, the
strategies they employ, and the errors they make, and even comparing
their performance on similar kinds of problems, are some of the ways we
can get past such blind spots and our natural tendency to think students
think as we do.

Such studies of student thinking contributed to the creation of a tech-
nology-enhanced algebra course, originally Pump Algebra Tutor and now
Cognitive Tutor Algebra.7  That course includes an intelligent tutor that
provides students with individualized assistance as they use multiple rep-
resentations (words, tables, graphs, and equations) to analyze real-world
problem situations. Numerous classroom studies have shown that this
course significantly improves student achievement relative to alternative
algebra courses (see www.carnegielearning.com/research). The course,
which was based on basic research on learning science, is now in use in
over 1,500 schools.
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FIGURE 8-1

a

b

student did not recognize the inconsistency between the positive slope of
the line and the negative slope in the equation. Even good mathematicians
could make such a mistake, but they would likely monitor their work as they
went along or reflect on the plausibility of the answer and detect the incon-
sistency. This student could have caught and corrected his error had he
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acquired both fluency in interpreting the slope of a function from its equa-
tion (i.e., to see that it represents a decreasing function) and a reflective
strategy for comparing features of different representations.

A second, more fundamental error in the student’s solution was that the
table of values does not represent a linear function. That is, there is not a
constant change in y for every unit change in x. The first three coordinates in
the student’s table were linear, but he then recorded (2.5, 0) as the fourth
coordinate pair rather than (3, 0), which would have made the function
linear. He appears to have estimated and recorded coordinate points by
visually reading them off the graph without regard for whether the final
table embodied linearity. Furthermore, the student did not realize that the

equation he produced, y x= –

.
–

3

2 5
3 , translates not only into a decreasing line,

but also into a table of numbers that decreases by 
–

.

3

2 5
for every positive unit

change in x.
At a surface level, this student’s solution reflects some weaknesses in

procedural knowledge, namely, getting the sign wrong on the y-intercept
and imprecisely reading x-y coordinates off the graph. More important, how-
ever, these surface errors reflect a deeper weakness in the student’s concep-
tual understanding of function. The student either did not have or did not
apply knowledge for interpreting key features (e.g., increasing or decreas-
ing) of different function representations (e.g., graph, equation, table) and
for using strategies for checking the consistency of these interpretations (e.g.,
all should be increasing). In general, the student’s work on this problem
reflects an incomplete conceptual framework for linear functions, one that
does not provide a solid foundation for fluid and flexible movement among
a function’s representations.

This student’s work is representative of the difficulties many secondary-
level students have with such a problem after completing a traditional text-
book unit on functions. In a study of learning and teaching functions, about
25 percent of students taking ninth- and eleventh-grade advanced math-
ematics courses made errors of this type—that is, providing a table of values
that does not reflect a constant slope—following instruction on functions.8

This performance contrasts with that of ninth- and eleventh-grade math-
ematics students who solved this same problem after receiving instruction
based on the curriculum described in this chapter. This group of students
had an 88 percent success rate on the problem. Because these students had
developed a deeper understanding of the concept of function, they knew
that the y-values in a table must change by the same amount for every unit
change in x for the function to be linear. The example in Figure 8-1c shows
such thinking.
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Problem: Make a table of values that would produce the function
seen above.

This student identified a possible y-intercept based on a reasonable
scale for the y-axis. She then labeled the x- and y-axes, from which she
determined coordinate pairs from the graph and recorded them in a table of
values. She determined and recorded values that show a constant increase
in y for every positive unit change in x. She also derived an equation for the
function that not only corresponds to both the graph and the table, but also
represents a linear relationship between x and y.

How might one teach to achieve this kind of understanding? The
goal of this chapter is to illustrate approaches to teaching functions that
foster deep understanding and mathematical fluency. We emphasize the
importance of designing thoughtful instructional approaches and curricula

FIGURE 8-1

c



TEACHING AND LEARNING FUNCTIONS 359

that reflect the principles of How People Learn (as outlined in Chapter 1), as
well as recent research on what it means to learn and understand functions
in particular. We first describe our approach to addressing each of the three
principles. We then provide three sample lessons that emphasize those prin-
ciples in sequence. We hope that these examples provide interesting activi-
ties to try with students. More important, these activities incorporate impor-
tant discoveries about student learning that teachers can use to design other
instructional activities to achieve the same goals.

ADDRESSING THE THREE PRINCIPLES

Principle #1: Building on Prior Knowledge

Principle 1 emphasizes the importance of students and teachers con-
tinually making links between students’ experiences outside the mathemat-
ics classroom and their school learning experiences. The understandings
students bring to the classroom can be viewed in two ways: as their every-
day, informal, experiential, out-of-school knowledge, and as their school-
based or “instructional” knowledge. In the instructional approach illustrated
here, students are introduced to function and its multiple representations by
having their prior experiences and knowledge engaged in the context of a
walkathon. This particular context was chosen because (1) students are fa-
miliar with money and distance as variable quantities, (2) they understand
the contingency relationship between the variables, and (3) they are inter-
ested in and motivated by the rate at which money is earned.

The use of a powerful instructional context, which we call a “bridging
context,” is crucial here. We use this term because the context serves to
bridge students’ numeric (equations) and spatial (graphic) understandings
and to link their everyday experiences to lessons in the mathematics class-
room. Following is an example of a classroom interaction that occurred
during students’ first lesson on functions, showing how use of the walkathon
context as an introduction to functions in multiple forms—real-world situa-
tion (walkathon), table, graph, verbal (“$1.00 for each kilometer”), situation-
specific symbols ($ = 1 * km), and generic symbolic (y = x * 1)—accom-
plishes these bridging goals. Figures 8-2a through 8-2c show changes in the
whiteboard as the lesson proceeded.

Teacher What we’re looking at is, we’re looking at what
we do to numbers, to one set of numbers, to
get other numbers. . . . So how many of you
have done something like a walkathon? A
readathon? A swimathon? A bikeathon?
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[Students raise their hands or nod.] So most of
you…So I would say “Hi Tom [talking to a
student in class], I’m going to raise money for
such and such a charity and I’m going to walk
ten kilometers.”

Tom  OK.

Teacher Say you’re gonna sponsor me one dollar for
every kilometer that I walk. So that’s sort of the
first way that we can think about a function. It’s
a rule. One dollar for every kilometer walked.
So you have one dollar for each kilometer
[writing “$1.00 for each kilometer” on the
board while saying it]. So then what I do is I
need to calculate how much money I’m gonna
earn. And I have to start somewhere. So at
zero kilometers how much money do I have
Tom? How much are you gonna pay me if I
collapse at the starting line? [Fills in the
number 0 in the left-hand column of a table
labeled “km”; the right-hand column is labeled
“$”.]

Tom  None.

Teacher So Tom, I managed to walk one kilometer
[putting a “1” in the “km” column of the table
of values below the “0”]. . . .

Tom  One dollar.

Teacher One dollar [moving to the graph]. So I’m going
to go over one kilometer and up one dollar
[see Figure 8-2a].

FIGURE 8-2a Graphing a point from the
table: “Over by one kilometer and up by one
dollar.” The teacher uses everyday English
(“up by”) and maintains connection with the
situation by incorporating the units “kilometer”
and “dollar.”
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[Students continue to provide the dollar
amounts for each of the successive kilometer
values. Simple as it is, students are encour-
aged to describe the computation—”I multiply
two kilometers by one to get two dollars.” The
teacher fills in the table and graphs each
coordinate pair. [The board is now as shown in
Figure 8-2b.]

Teacher Now, what I want you to try and do, first I want
you to look at this [pointing to the table that
goes from x = 0 to x = 10 for y = x] and tell me
what’s happening here.

Melissa You, like, earn one dollar every time you go up.
Like it gets bigger by one every time.

Teacher So every time you walk one kilometer you get
one more dollar, right? [Makes “> 1” marks
between successive “$” values in the table—
see Figure 8-2c.] And if you look on the graph,
every time I walk one kilometer I get one more
dollar. [Makes “step” marks on the graph.] So
now I want to come up with an equation, I
want to come up with some way of using this
symbol [pointing to the “km” header in the
left-hand column of the table] and this symbol
[pointing to the “$” header in the right-hand
column of the table] to say the same thing, that
for every kilometer I walk, let’s put it this way,
the money I earn is gonna be equal to one
times the number of kilometers I walk. Some-
one want to try that?

FIGURE 8-2b The teacher and
students construct the table and
graph point by point, and a line
is then drawn.
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Alana Um, kilometers times one equals money. [The
teacher writes “km x 1 = $” and “y = x * 1”;
see Figure 8-2c.]

Teacher So this equation, this table, and this graph are
all the same function. They all mean the same
thing. They all mean that you’re multiplying
each of these numbers (pointing to the values
along the x-axis of the graph) by one to get
new numbers.

Another way of building on students’ prior knowledge is to engage
everyday experiential knowledge. Students frequently know things through
experience that they have not been taught explicitly. They can often solve
problems in ways we do not teach them or expect if, and this is an important
qualification, the problems are described using words, drawings, or nota-
tions they understand. For example, the topic of slope is typically reserved
for ninth-grade mathematics, and is a part of students’ introduction to rela-
tions and functions in general and to linear functions in particular. It is
generally defined as the ratio of vertical distance to horizontal distance, or
“rise to run.” The rise is the change in the vertical distance, and the run is the

change in the horizontal distance so that slope
rise
run

= . Once the equation for a

straight line, y = mx + b , has been introduced, m is defined as the slope of

that line and is calculated using the formula m
y y

x x
= 2 1

2 1

–

– .

For students to understand slope in these definitional and symbolic ways,
they must already have in place a great deal of formal knowledge, including

FIGURE 8-2c The teacher highlights the “up by” amount in the table (“>1” marks), graph (over
and up “step” marks), and symbolic equation (pointing at “*1”).
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the meaning of ratio, coordinate graphing, variables, and subscripts, and
such skills as solving equations in two variables and combining arithmetic
operations. Knowing algorithms for finding the slope of a function, how-
ever, does not ensure that the general meaning of slope will be understood.
As illustrated in Figure 8-1a, a student can know the algorithm for finding
the slope, but not understand that the slope of a line characterizes its relative
steepness on a graph and tells something about the rate of change in covarying,
dependent quantities.

We have found that younger students have intuitive and experiential
understandings of slope that can be used to underpin the formal learning
that involves conventional notations, algorithms, and definitions. To illus-
trate, we gave a class of fifth and sixth graders the following situation:

Jane is in a walkathon. A rule or “function” tells us how much Jane will earn
depending on how many kilometers she walks. We don’t know what the
function is. It is a mystery. We do know that if Jane walks 1 kilometer she
will earn 4 dollars and if she walks 3 kilometers she will earn 8 dollars.

Students were asked to figure out the slope of the function that tells how
much Jane will earn. Half of the students were provided with the formal rise-
over-run ratio definition of slope; the other half were given a definition of
slope that reflected more familiar, student language, being told that the slope
of a function is the amount by which the answer goes up for every change
of one in the start value.

We found that many of these younger students were able to describe
informally the slope of the function given in the story problem by figuring
out how much Jane’s earnings go up by for every kilometer she walks. They
noticed that when Jane walks three kilometers instead of one, she earns four
more dollars; thus she earns two more dollars for every extra kilometer she
walks. In this way, these prealgebra students identified the slope of the
mystery function as 2 without receiving instruction on formal definitions or
procedures. In contrast, students who were given the textbook definition of
slope were not able to determine the slope in this example.

Our point is not that all problems should be phrased in “student lan-
guage.” It is important for students to learn formal mathematics terminology
and abstract algebraic symbolism. Our point, instead, is that using student
language is one way of first assessing what knowledge students are bringing
to a particular topic at hand, and then linking to and building on what they
already know to guide them toward a deeper understanding of formal math-
ematical terms, algorithms, and symbols.

In sum, students’ prior knowledge acts as a building block for the devel-
opment of more sophisticated ways of thinking mathematically. In some
cases, we may underestimate the knowledge and skills students bring to the
learning of functions. Topics and activities we presume to be challenging
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and difficult for students may in fact have intuitive or experiential underpin-
nings, and it is important to discover these and use them for formalizing
students’ thinking.

Principle #2: Building Conceptual Understanding,
Procedural Fluency, and Connected Knowledge

The focus of Principle 2 is on simultaneously developing conceptual
understanding and procedural fluency, and helping students connect and
organize knowledge in its various forms. Students can develop surface facil-
ity with the notations, words, and methods of a domain of study (e.g., func-
tions) without having a foundation of understanding. For students to under-
stand such mathematical formalisms, we must help them connect these
formalisms with other forms of knowledge, including everyday experience,
concrete examples, and visual representations. Such connections form a
conceptual framework that holds mathematical knowledge together and fa-
cilitates its retrieval and application.

As described previously, we want students to understand the core con-
cept of a fuctional relationship: that the value of one variable is dependent
on the value of another. And we want them to understand that the relation-
ship between two variables can be expressed in a variety of ways—in words,
equations, graphs, tables—all of which have the same meaning or use the
same “rule” for the relationship. Ultimately, we want students’ conceptual
understanding to be sufficiently secure, and their facility with representing
functions in a variety of ways and solving for unknown variables sufficiently
fluid, that they can tackle sophisticated problems with confidence. To this
end, we need an instructional plan that deliberately builds and secures that
knowledge. Good teaching requires not only a solid understanding of the
content domain, but also specific knowledge of student development of
these conceptual understandings and procedural competencies. The devel-
opmental model of function learning that provides the foundation for our
instructional approach encompasses four levels—0 to 3—as summarized in
Table 8-1. Each level describes what students can typically do at a given
developmental stage. The instructional program is then designed to build
those competences.

Level 0

Level 0 characterizes the kinds of numeric/symbolic and spatial under-
standings students typically bring to learning functions. Initially, the numeric
and spatial understandings are separate. The initial numeric understanding
is one whereby students can iteratively compute within a single string of
whole numbers. That is, given a string of positive, whole numbers such as 0,
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TABLE 8-1  A Developmental Model for Learning Functions

Level General Description Example Tasks and Understandings

0 Students have separate numeric and
spatial understandings.

• Initial numeric understanding: Extend the pattern
students iteratively compute (e.g., 3, 7, 11, 15, ___, ____, ____.
“add 4”) within a string of positive
whole numbers.

• Initial spatial understanding: students Notice in a bar graph of yearly
represent the relative sizes of population figures that each bar is
quantities as bars on a graph and taller than the previous bar.
perceive patterns of qualitative
changes in amount by a left-to-right
visual scan of the graph, but cannot
quantify those changes.

1 Spatial and numeric understandings
are elaborated and integrated,
forming a central conceptual structure.

• Elaboration of numeric understanding: Multiply each number in the sequence
— Iteratively apply a single operation 0, 1, 2, … by 2 to get a set of pairs:

to, rather than within, a string of 0-0, 1-2, 2-4, ….
numbers to generate a second Generalize the pattern and express it
string of numbers. as y = 2x.

— Construct an algebraic expression
for this repeated operation. Notice that a graph of daily plant

• Elaboration of spatial understanding: growth must leave spaces for
— Use continuous quantities along unmeasured Saturday and Sunday

the horizontal axis. values.
— Perceive emergent properties,

such as linear or increasing, in the For every 1 km, a constant “up by” $2
shape of the line drawn between in both the y-column of a table and
points. the y-axis in a graph generates a

• Integration of elaborated linear pattern (spatial) with a slope of
understandings:  2 (numeric). y = 2x can be read

Continued
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— See the relationship between the from, or produced in, both a table
differences in the y-column in a and a graph.
table and the size of the step from
one point to the next in the
associated graph.

• Interpret algebraic representations
both numerically and spatially.

2 • Elaborate initial integrated numeric Look at the function below. Could it
and spatial understandings to create represent y = x – 10? Why or why
more sophisticated variations. not?

• Integrate understanding of y = x and
y = x + b to form a mental structure
for linear functions.

• Integrate rational numbers and
negative integers.

• Form mental structures for other If you think it could not, sketch what
families of functions, such as you think it looks like.
y = xn + b.

3 • Integrate variant (e.g., linear and At what points would the function
nonlinear) structures developed at y = 10x – x2 cross the x axis?
level 2 to create higher-order Please show all of your work.
structures for understanding more-
complex functions, such as
polynomials and exponential and
reciprocal functions.

• Elaborate understanding of graphs
and negative integers to differentiate
the four quadrants of the Cartesian plane.

• Understand the relationship of these
quadrants to each other.

TABLE 8-1  Continued

Level General Description Example Tasks and Understandings
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2, 4, 6, 8, …, students are able to see the pattern of adding 2 to each succes-
sive number. The initial spatial understanding is one whereby students can
represent the relative sizes of quantities as bars on a graph. Students can
easily see differences in the sizes of bars (how tall they are) and can use this
spatial information to draw inferences about associated quantities. Students
can read bar graphs that, for instance, show daily measurements of the
growth of a plant in the classroom. They can see that each bar is taller than
the previous one, that the plant is taller on Friday than on Thursday, but
cannot easily quantify those changes.

Level 1

At level 1, students begin to elaborate and integrate their initial numeric
and spatial understandings of functions. They elaborate their numeric un-
derstanding in two steps. First, whereas students at level 0 can extend a
single sequence of numbers such as 0, 2, 4, 6, …, at level 1 they can operate
on one sequence of numbers to produce a second sequence. For example,
students can multiply each number in the sequence 0, 1, 2, 3, … by 2 and
form the resulting pairs of values: 0-0, 1-2, 2-4, 3-6, …. Students learn to
record these pairs of values in a table and to construct an algebraic equation
for this repeated operation by generalizing the pattern into an equation such
as y = 2x.

Students’ spatial understanding is also improving. They come to under-
stand that maintaining equal distances between values on the x-axis is criti-
cal to having a meaningful graph of a function. They also progress from
understanding graphs with verbal or categorical values along the x-axis,
such as cities (with their populations on the y-axis), to understanding graphs
with quantitative values along the x-axis, such as time quantified as days
(with the height of a plant on each successive day on the y-axis). The ex-
ample of graphing plant growth is an interesting one because it is an activity
at the cusp of this transition. Students initially view values on the x-axis as
categorical, not sequenced (so that Thursday, Friday, Monday is okay). Later
they come to view these values as quantitative, in a sequence with a fixed
distance between the values (such that Thursday, Friday, Monday is not
okay because Saturday and Sunday must be accounted for).

Without being able to view the x-axis as quantitative, students cannot
see graphs as representing the relationship between two changing quanti-
ties. Drawing a line to join the points provides a visual representation of the
relationship between the quantities. The line offers a way of packaging key
properties of the function or pattern of change that can be perceived quickly
and easily. For example, students can see how much earnings change per
kilometer by looking at the steepness of the line.
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As their initial numeric and spatial understandings are elaborated, stu-
dents at level 1 also begin to connect, or integrate, these understandings.
They make connections between tables and graphs of x-y pairs, using one
representation to generate inferences that can be checked by the other. The
overall pattern of a function can be understood both in the size of the
increments in the y-column of the table and in the steepness of the line
moving from one point to another in the graph. The constant “up-by” 1
seen, for example, in Figure 8-2c in the right-hand column of a table is the
same as the constant “up-by” 1 in a line of a graph (see the same figure). As
these views become integrated, students develop a deeper and more flex-
ible understanding of functions, in this case, a linear pattern with a rise of 1.
With this new integrated mental structure for functions, students can sup-
port numeric and spatial understandings of algebraic representations such
as y = 1x.

Grasping why and how the line on a graph maps onto the relationship
described in a word problem or an equation is a core conceptual under-
standing. If students’ understanding is only procedural, they will not be well
prepared for the next level (see Box 8-2). To ensure that students master the
concepts at this level, complex content is avoided. Students are not required
to operate with negative or rational numbers or carry out more than one
operation in a single function (such as multiplying x by any value and add-
ing or subtracting a constant, as in the general y = mx + b form). Such
limiting of these complicating factors is intended to minimize loads on pro-
cessing and working memory, thus enabling students to focus on the es-
sence of the integration of numeric and spatial understandings of function.
Students learn more complex content during levels 2 and 3.

Level 2

As students progress to level 2, they begin to elaborate their initial inte-
grated numeric and spatial understandings. In doing so, they begin to com-
bine operations and develop fluency with functions in the form y = mx + b,
where m and b can be positive or negative rational numbers. They also
work with y = xn + b, where n is a positive whole number, and b is any
positive or negative rational number. For a full elaboration to occur, it is
necessary for students to understand integers and rational numbers and have
facility in computing with both of these number systems. Finally, students
differentiate families of functions to see differences in the shapes and char-
acteristics of linear, quadratic, and cubic functions.
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Level 3

At level 3, students learn how linear and nonlinear terms can be related
and understand the properties and behaviors of the resulting entities by
analyzing these relations. To achieve this understanding, students must have
well-constructed and differentiated models of different sorts of functions,
such as quadratics in the form y = ax2 + bx + c or y = a(x – p)2 + q;
polynomials; and reciprocal, exponential, and growth functions. They must
also have the necessary facility with computational, algebraic, and graphing
operations to interrelate the numeric/symbolic and spatial representations of
these complex functions. Furthermore, students must elaborate their under-
standing of graphs so they differentiate the four quadrants of the Cartesian
plane, understand the relationship of these quadrants to each other, and
relate these quadrants to negative numbers.

Recall Figure 8-1a and the difficulties the student had in producing a
table of values for an increasing linear function with a negative y-intercept.
This student did not recognize, or at least did not acknowledge, why it is
impossible for the given function to have a negative slope and to have a
table of values without a constant rate of change. These are the sorts of
problems that occur when students experience instruction that fails to pro-
mote the development of a sound conceptual framework for functions. Now
consider the solution to the problem in Box 8-3, in which a student intro-
duces a table (without prompting) to help solve a problem about interpret-
ing a graph in terms of an equation.

This student exhibited an integrated concept of function. He generated
a response that showed consistency between the spatial (graph) and
numeric (table and equation) representations of the function. He explained
why the function has a slope of –2 as per its numeric (tabular) and
spatial (graphic) representations and correctly symbolized that rationale in
the equation.

Such integration can be supported in the classroom. For example, through-
out the walkathon classroom exchange reported earlier, the teacher is mov-
ing fluidly and rapidly between numeric and spatial representations of a
function (the table and equation and the graph, respectively). Such move-
ment helps students simultaneously build understandings of each of these
representations in isolation, and of the integrated nature of the representa-
tions in particular and the concept in general. This integration helps students
begin to understand and organize their knowledge in ways that facilitate the
retrieval and application of relevant mathematical concepts and procedures.

If students’ numeric and spatial understandings are not integrated,
they may not notice when a conclusion drawn from one understanding is
inconsistent with a conclusion drawn from another. The inconsistencies
found in the student’s work in Figure 8-1a illustrate such a lack of reflective
recognition.
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BOX 8-2 The Devil’s in the Details: The 3-Slot Schema for Graphing
a Line

What students glean from instruction is often very different from what
we as teachers intend. This observation is nicely illustrated by the re-
search of Schoenfeld and colleagues.9  They detail the surprising misun-
derstandings of a 16-year old advanced algebra student who is grappling
with conceptual questions about equations and graphs of linear functions.

Most standard algebra instruction is intended to guide students to-
ward developing what Schoenfeld and colleagues10  call the “2-slot
schema” for understanding and graphing an equation for a line. This
schema says that knowing the slope of a line and its y-intercept enables
one to obtain a complete description of the line, both graphically and
algebraically. Call the line L; let its slope be m and its y-intercept b. Alge-
braically, the line L has equation y = mx + b if and only if the line has slope
m and y-intercept b. Graphically, the line L passes through the point (0, b)
and rises m units vertically for each unit it traverses horizontally.

The student in Schoenfeld’s study, called IN, was relatively sophisti-
cated in understanding aspects of the above schema. However, IN’s knowl-
edge was not fully integrated, and she exhibited a surprising misunder-
standing. She initially believed that three quantities must be known to
graph an equation of a line: (1) slope, (2) y-intercept, and (3) x-intercept.
After having solved the equation 2 = 4x + 1 to get x = 1/4, she was asked
to the graph the function 4x + 1 on the right side of this equation. She
responded as follows: “the slope, which is 4, . . . the y-intercept, which is
1,…and…the x-intercept, which is 1/4, so we’ve found everything.” Note
that IN said that to find “everything,” she needed the slope, y-intercept,
and x-intercept. In other words, she appeared to have a 3-slot schema for
understanding and graphing a linear equation instead of the 2-slot schema
described above.

Clearly this student had received extensive instruction in linear func-
tions. For instance, in an earlier exchange, when asked for an equation of

Principle #3: Building Resourceful, Self-Regulating
Problem Solvers

As discussed above, teaching aimed at developing robust and fluent
mathematical knowledge of functions should build on students’ existing real-
world and school knowledge (Principle 1) and should integrate procedural
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a straight line, she immediately said, “y = mx + b.” However, IN lacked a
well-integrated understanding of the relationships between the features
of the equation and graphical forms of a line. Schoenfeld and colleagues11

explain:
When a person knowledgeable about the domain determines that

the slope of a particular line is some value (say, 1. . .) and that its intercept
is some other value (say, 3), then the job is done. The equation of the line
must be y = (1)x + 3. IN had no such procedure. Although she believed
that the slope, x-intercept, and y-intercept were all important (and she
could read the values of the slope and y-intercept off equations of the
form y = mx + b), she did not have a stable procedure for determining the
values of those entities from a graph and did not know what to do with
the values when she had them.

As other researchers have shown,12  learners often struggle to tell
the difference between the surface features of a subject, which are easy
to see but can be misleading, and the deep features, which are difficult to
see but are needed for understanding and accurate performance. In this
case, three “entities” or aspects of the graph of a line stood out when IN
looked at a graph: namely, where it crossed the x-axis, where it crossed
the y-axis, and the steepness of the line. All three are important, but IN
had the surface understanding that all three are necessary. She appeared
to lack the deeper understanding that only two of these three are needed
to draw a line. She did not understand how using the y-intercept and
slope, in particular, facilitate an efficient graphing strategy because they
can be read immediately off the standard form of an equation.

Schoenfeld and colleagues’ fine-grained analysis of learning nicely
illustrates how subtle and easily overlooked misconceptions can be—even
among our best students.13

skill and conceptual understanding (Principle 2). However, instruction should
assist students not only in thinking with mathematical procedures and con-
cepts, but also in thinking about procedures and concepts and in reflecting
on and articulating their own thinking and learning. This kind of thinking
about thinking, or metacognition, is the focus of Principle 3. Encouraging
students to reflect on and communicate their ideas about functions supports
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BOX 8-3 An Integrated Understanding of Functions

them in making the connections among representations that are necessary
for flexible, fluent, and reliable performance.

A particularly important type of metacognitive thinking in mathematics
is coordinating conclusions drawn from alternative mathematical represen-
tations or strategies. Teachers will recognize one form of such coordination
in the well-known recommendation that students solve problems in more
than one way (e.g., add up and add down) to check whether the same
answer is found. A more subtle form of such coordination was exemplified
in the earlier discussion of desired student performance on the assessment
item shown in Figure 8-1a. In this example, good metacognitive thinking
was not about checking the consistency of numeric answers obtained using
different strategies, but about checking the consistency of verbal interpreta-
tions (e.g., increasing vs. decreasing) of different representations. In other
words, we want to encourage students to think about problems not only in
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multiple ways (strategies), but also with multiple tools (representations),
and to draw conclusions that are not only quantitative (numeric answers),
but also qualitative (verbal interpretations).

Supporting metacognitive thinking and attitudes goes beyond reflection
and coordination of alternative mathematical representations and strategies.
It includes creating a classroom atmosphere in which students feel comfort-
able to explore, experiment, and take risks in problem solving and learning.
It also includes helping students develop a tolerance for the difficulties math-
ematics sometimes presents and a will to persevere when, for example, they
are unable to detect the pattern in the table of values that identifies the
relationship between x and y in a particular function. Yet another type of
instructional support for metacognitive thinking involves helping students
become better help seekers. Students need to learn to recognize when they
have reached the limits of their understanding and to know how to obtain
the support they need, including asking the teacher or a fellow student;
consulting reference materials; and using such tools as computer software,
the Internet, or a graphing calculator.

TEACHING FUNCTIONS FOR UNDERSTANDING
Good teaching requires more than knowledge of the content to be taught

and of a developmental model for how students acquire an understanding
of that content. It also requires a set of instructional strategies for moving
students along that developmental pathway and for addressing the obstacles
and opportunities that appear most frequently along the way. Below we
describe a unit of instruction, based on the developmental model described
above, that has been shown experimentally to be more effective than tradi-
tional instruction in increasing understanding of functions for eighth and
tenth graders.14  In fact, sixth-grade students taught with this instructional
approach were more successful on a functions test than eighth and tenth
graders who had learned functions through conventional instruction. At the
secondary level, tenth graders learning with this approach demonstrated a
deeper understanding of complex nonlinear functions. For instance, they
performed significantly better on a test item requiring them to draw a “quali-
tative” graph (no scale on the axes) of the function y = x3 in relation to a
given graph of y = x4.

Curriculum for Moving Students Through the Model

This section summarizes the key features and activities of a curriculum
that was developed for moving students through the four-level learning se-
quence described above. We believe such theory-based instruction encour-
ages students (1) to build on and apply their prior knowledge (Principle 1),
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(2) to construct an integrated conceptual framework for understanding func-
tions (principle 2), and (3) to apply metacognitive skills to their learning
(principle 3). An overview of this curriculum is presented in Table 8-2, fol-
lowed by a more detailed description. Example lessons are provided in the
next section.

The curricular sequence we suggest has been used effectively with stu-
dents in sixth, eighth, tenth, and eleventh grades. Because timetables and
scheduling vary from school to school and from grade to grade, the amount
of material per lesson will also vary depending on the available class time.
This unit requires approximately 650 minutes of class time to complete. We
recommend that it be taught as a whole and in the sequence suggested,
even if students are in an upper secondary-level grade and require the more
advanced level 3 material. We emphasize implementing the full sequence of
topics because the concepts addressed in the level 3 material are supported
by a deep and flexible understanding of the ideas found in the level 1 and 2
material, an understanding that is often insufficiently developed in earlier
grades. Students in the senior grades will likely move more quickly through
the beginning part of the unit than will junior students, and the extra time
allotted for the unit can then be used for working through more-advanced
ideas that are likely beyond younger students’ capabilities.

The instructional approach we are suggesting is different from some
more traditional approaches in many ways. First, the latter approaches often
use different contexts or situations for introducing the individual topics within
the domain, rather than the single bridging context of the walkathon we use.
Within one curriculum, for example, the gradient of a hill may be used for
introducing slope, and fixed cost in production may be used for introducing
y-intercept. Mixing contexts can make understanding y = mx + b as an
integrated concept more difficult than is the case if slope and y-intercept are
introduced within the same context.

The use of multiple representations is another significant feature of the
suggested curriculum, one that again distinguishes it from more traditional
approaches. In many traditional approaches, instruction may be focused on
a single representation (e.g., equation or graph) for weeks before multiple
representations are related. In our curricular approach, tables, graphs, equa-
tions, and verbal rules are copresented within seconds, and students are
encouraged to see them as equivalent representations of the same math-
ematical relationship. Emphasis is placed on moving among these represen-
tations and on working to understand how they relate to each other.

Our approach also engages students in the construction of functional
notation, and thus helps them build notations and meanings for such con-
structs as slope and y-intercept into equations. This approach contrasts with
many existing curricula, which give students the formal notation and then
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focus on introducing them to procedures for finding, for example, the slope
of a linear function or the vertex of a quadratic function. Over the course of
our instruction, students progressively formalize their own initial notations
until those notations correspond with conventional general equations, such
as y = mx + b or y = ax2 + bx + c.

Finally, the kinds of follow-up activities we suggest may differ from
those of more traditional approaches. We suggest activities that allow stu-
dents to remain situated in the context of instruction for the first part of the
unit (that is, related to a walkathon) until they are confident and competent
with the concepts on a more abstract basis. Then, when students move to
the computer environment, they engage in activities in which no new con-
cepts are introduced at first. Rather, students have time to consolidate the
individual concepts addressed in the first part of the unit, and then move on
to more challenging activities that advance their thinking and understanding
in the domain. These more challenging activities involve the addition of new
features to familiar structures. For example, the left-hand quadrants of the
Cartesian plane are eventually included in activities, and linear terms are
added to y = x2 + b to generate equations in the form y = ax2 + bx + c.
Students also give presentations on a particular kind of function (e.g., linear,
quadratic, reciprocal, cubic) to their classmates. In these presentations, stu-
dents share their understanding of and expertise in key characteristics and
behaviors of these functions.

Example Lessons

In the following sections, we elaborate on three specific lessons that
highlight the role of the three principles of How People Learn in the curricu-
lum described in Table 8-2. Although we do not provide a complete descrip-
tion of these lessons, the example activities should be sufficient to suggest
how the lessons might be used in other classrooms. The three lessons and
their companion activities illustrate the principles of How People Learn in
three key topic areas: slope, y-intercept, and quadratic functions. Example
lesson 1, “Learning Slope,” illustrates principle 1, building on students’ prior
knowledge. Example lesson 2, “Learning y-intercept,” illustrates principle 2,
connecting students’ factual/procedural and conceptual knowledge. Example
lesson 3, “Operating on y = x2,” illustrates principle 3, fostering reflective
thinking or metacognition in students. Although each of the selected lessons
is used to highlight one of the principles in particular, the reader should
keep in mind that all three principles interact simultaneously throughout
each lesson.
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TABLE 8-2 Suggested Curricular Sequence

Topic Description Activities

Level 1
Introduction The walkathon bridging context Student partners each invent at

is introduced. Students record least two of their own
in tables the money earned for sponsorship arrangements, for
each kilometer walked and plot which their partner constructs
each pair of values for a variety tables, graphs, and equations.
of rules. Using kilometers and
dollars, an equation is
constructed based on the rule
of sponsorship.

Slope Slope is introduced as the Students are asked to find the
constant numeric up-by (or slope of several different
down-by) amount between functions expressed in tables,
successive dollar values in a graphs, and equations.
table or a graph. It is a relative
measure of the steepness of a
function. It is the amount by
which each kilometer (x – value)
is multiplied.

y-Intercept y-Intercept is introduced as the Students invent two linear
“starter offer,” that is, a fixed functions that allow them to earn
starting bonus students receive exactly $153.00 after walking 10
before the walkathon begins. It kilometers. Students record the
affects only the vertical starting slope and y-intercept of each
point of the numeric sequence function and explain how the
and graph. It does not affect the y-intercept of each function can
steepness or shape of the line. be found in its table, graph, and

equation.
Curving Nonlinear functions are introduced Students are asked to decide which
functions as those having up-by amounts of four functions expressed in

that increase (or decrease) after tables are nonlinear and to explain
each kilometer walked. They are their reasoning. They are also
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derived by multiplying the asked to write an equation for and
kilometers (x) by itself at least . to sketch and label the graph of
once The more times x is each function. Students are
multiplied by itself, the greater asked to come up with a curved-
is the difference between line function for earning $153.00
dollar values and thus the over 10 kilometers.
steeper the curve.

Levels 2 and 3
Computer Level 2 students use spreadsheet Students change the steepness,
activities technology and prepared files y-intercept, and direction of y = x

and activity sheets to consolidate and y = x2 to make the function
and extend the understandings go through preplotted points.
they constructed about slope, They record the numeric,
y-intercept, and linearity in the algebraic, and graphic effects of
first part of the curriculum. Level their changes. They also invent
3 extensions include working in functions with specific
all four quadrants to transform attributes, such as parallel to
quadratic and cubic functions y = 4x and a y-intercept below
and to explore the properties, the x-axis, or an inverted parabola
behaviors, and characteristics of that is compressed and in the
exponential, reciprocal, and other lower left-hand quadrant.
polynomial functions.

Presentations Groups of students investigate Groups of students use computer-
and then prepare a presentation generated output of graphs,
about a particular type of function. equations, and tables to illustrate
Presentations stimulate a particular type of function’s
discussion and summarizing of general properties and behaviors.
key concepts and serve as a Students give presentations
partial teacher assessment for about their function and share
evaluating students’ post- their expertise with classmates.
instruction understanding about
functions.

TABLE 8-2 Continued

Topic Description Activities
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Example Lesson 1: Learning Slope

The classroom interaction recounted below took place during students’
first lesson on slope. The students had already worked through the con-
struction of representations for the introductory rule of the walkathon—
earning one dollar for every kilometer walked. In this interaction we can see
how Katya quickly grasps the idea of slope as relative steepness, as defined
by the variable relationship between two quantities (distance walked and
money earned in this case):

Teacher I want to think of a way, let’s see, Katya, how
might you sponsor me that would make a line
that is steeper than this [y = x is already drawn
on graph, as in Figure 8-2b]?

Katya Steeper? Alright . . . every kilometer you walk
you get two dollars.

Teacher Two dollars. So let’s try that. So at zero
kilometers how much am I going to have?

Katya At zero kilometers you’ll have zero.

Teacher At one?

Katya You’ll have two.

Teacher And what happens at ten?

Katya At ten you’ll have twenty.

Teacher So Katya, what have you done each time?

Katya: I’ve just multiplied by two.

Teacher You’ve multiplied each one of these [pointing
to the numbers in the left column of the table]
by two, right? Zero times two, one times two
[moving finger back and forth between
columns]. If I graph that, where’s it going to
start, Katya?

Katya It’s going to start at zero.

Teacher So at zero kilometers, zero money. At one?

Katya At one it’s going to go to two.

Teacher At two it’s going to go to?

Katya Four.

Teacher Over two up to four. At three?

Katya It’s going to go to six.

Teacher What do you see on the graph? What do you
see happening?
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Katya It’s going higher. It’s steeper than the other
one.

Teacher So it’s steeper and it’s going up by how much?

Katya Two.

Teacher So Katya, since this is your function, what
would the equation for this function be?

Katya Kilometers times two equals money.

Teacher That’s absolutely right. And what do you notice
about these values [pointing to dollar values in
the table and making “>“ marks between
successive values]?

Katya They’re going up by 2.

The Lesson. The lesson on slope is the second lesson suggested in the
overall sequence of instruction, after the walkathon has been introduced. It
requires about two class periods, or 90 minutes. We introduce slope as the
constant numeric up-by amount that is found between successive y-values
for every unit change in x. This up-by amount can be seen in a function’s
table or its graph. The up-by terminology was invented by students who
were asked to describe the meaning of slope using their own words. When
introducing this up-by idea to students, we suggest beginning with the graph
and the table for the rule of earning one dollar for every kilometer walked ($
= 1 x km) and having students see that in each of these representations, the
dollar amount goes up by one for each kilometer walked. To show this on
the graph, the teacher may draw a staircase-like path from point to point
that goes over one and then up one (see Figure 8-2c). In the table, a third
column may be created to show the constant up-by difference between
successive y-values, as also illustrated in Figure 8-2c. We then suggest draw-
ing students’ attention to the facts that this up-by amount corresponds to the
mathematical concept of slope and that slope is a relative measure of a
function’s steepness. That is, the greater the up-by amount, the steeper is the
function. From this point on, y = x (y = 1 • x with a slope of 1) may be
employed as a landmark function for students to use in qualitative reason-
ing, by comparison, about the slopes (and later the y-intercepts) of other
functions. Conceptual landmarks are crucial tools to support learners in making
sense of, catching, and correcting their own and others’ errors.

After having created tables and graphs for the one dollar per kilometer
context, we challenge students such as Katya to provide sponsorship rules
(or functions) having slopes that are steeper and less steep than y = x. To
facilitate the comparison of graphs of functions with different slopes, we
encourage students to plot functions on the same set of axes. Before each
rule is graphed, we ask the students to predict the steepness of the line
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relative to y = x. We also have them invent other rules and make tables and
graphs for those rules. These explorations in multiple contexts and repre-
sentations develop students’ deeper understanding of slope. After all, the
essence of understanding is being able to apply a concept flexibly in differ-
ent contexts and with different representations. After having worked with
functions having varying degrees of steepness, we ask the students to sum-
marize their findings about slope and to explain that steeper lines are the
result of functions having bigger up-by amounts.

In our instruction, we do not provide students at the outset with an
algorithm for finding the slope of a function. However, we do suggest that
students be asked for their ideas about how the steepness, or slope, of a
function can be quantified—that is, represented as a number—and how
they can obtain that number from any of the representations of a function
they have seen. This is illustrated by the following teacher–student exchange
from a ninth-grade class:

Teacher This line [pointing to a graph of y = x] has a
certain steepness to it. . . . If you had to give a
number to this steepness, what would you
give it? Look at these numbers (pointing to the
corresponding table of values).

Aaron One.

Teacher Why one?

Aaron ‘Cause they all go up by one.

Introducing and working with functions having negative slopes is also
important to show that the way the students have been constructing slope as
the up-by amount is applicable to all straight-line functions, whether they
increase or decrease. We generally introduce negative values along the y-
axis by asking students to think about how the negative values along the y-
axis can be used. One situation we employ is from the perspective of the
donor or sponsor, who loses money as the participant walks. In our experi-
ence, students generally recognize that these lines have a down-by amount
when a fixed amount of money is given away for each kilometer walked.

Summary of Principle #1 in the Context of Learning Slope. We have
used a lesson on slope to illustrate how students’ initial knowledge of a
topic can be used for building formal or conventional mathematical knowl-
edge and notation structures. In this case, we draw on three sorts of prior
knowledge. First, students’ prior knowledge of familiar situations such as
earning money in a walkathon can be used to elicit and extend the students’
informal, intuitive ideas about a difficult topic such as slope. Second, stu-
dents’ prior knowledge of natural language, such as “up-by,” can be used to
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build a sound foundation of understanding for explaining and working with
more formal concepts and procedures, such as finding slope from a graph.
Third, prior knowledge with respect to initial numeric and spatial under-
standings can be integrated through instruction to help students construct a
conceptual understanding of slope within a broader framework for under-
standing functions in general.

Example Lesson 2: Learning y-Intercept

This example lesson focuses on learning and teaching y-intercept. It
illustrates the effect of theory-based instructional design in connecting stu-
dents’ factual/procedural and conceptual knowledge (principle 2).

A commonly taught procedure for finding the y-intercept of a function is
to substitute x = 0 into the function’s equation, with the result being the y-
intercept. Instead of starting by formally introducing this method, this lesson
begins by having students explore situations in which a nonzero starting
amount is used. This approach appears to do a better job of helping students
learn the formal procedure in the context of a robust conceptual under-
standing.

The Lesson. The lesson on y-intercept follows that on slope in the overall
curricular sequence. Two class periods of about 90 minutes are suggested
for working with y-intercept. We introduce the y-intercept by suggesting the
idea of a starting bonus or an initial amount of money that may be contrib-
uted before the walkathon even begins. Students have termed this starting
amount the “starter offer” or “starter upper.” These phrases have repeatedly
been shown to be simple for students to understand first in the walkathon
context and then in more abstract situations.

We again begin this lesson with a sponsorship arrangement of earning
one dollar for every kilometer walked. We then have students graph this
function, construct a table of values, and write a symbolic representation
for the function. We then tell students they will be given a five-dollar starter
offer just for participating in the walkathon. That is, before they have walked
at all, they will already have earned five dollars. In addition to this starting
bonus, they will still be earning one dollar for every kilometer walked.
Students are then asked to construct a table for this function and to calcu-
late how much money they will have earned at zero kilometers, one kilo-
meter, two kilometers, and so on. After the table has been constructed,
students are asked to graph the function and to make an equation for it.
Having students verbally describe the relationship between the kilometers
and dollars helps them formulate an equation. For example, a student might
say, “I think it would be five plus the kilometers equals money.” That de-
scription could then be translated into the situation-specific symbolic ex-
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pression 5 + km = $, and that expression, in turn, formalized into the gen-
eral expression, y = x + 5.

As the lesson proceeds, we suggest other rules whereby students earn
one dollar per kilometer but have different starter offer amounts, such as
two dollars, ten dollars, and three and a half dollars. We ask the students first
to predict where on a graph each new function will be relative to the first
example given (y = x + 5) and then to construct tables, graphs, and equa-
tions for each new function. Students are asked to describe any patterns or
salient characteristics they see in this group of functions. What we want
students to see, both literally and figuratively, is that all of the functions are
parallel, with a slope of 1, but their starting point on the graph changes in
accordance with the starting bonus offered. Furthermore, the distance be-
tween points on any two graphs is equal to the difference in starting bo-
nuses. For example, the functions 5 + km = $ and 10 + km = $ are five units
apart at every point along the line of each function. Likewise, in examining
the tables for each of the functions, we want students to see that all of the
functions go up by one (accounting for the parallel lines), but the first value
in the dollar column of each of the tables is equal to the starting bonus. We
then connect the “starting points” of the graphs and tables with the structure
of the equations to show that the starting bonus is indeed added to each x-
value.

Emphasizing that the only effect of changing the starter offer is a vertical
shift in a function is crucial because a number of researchers have found that
students regularly confuse the values for slope and y-intercept in equations.
That is, in an equation such as y = 2x + 7, many students are unsure of which
“number” is the y-intercept and which is the slope. Initially, students of all
ages and grades in our program often predict that changing the starter offer
will also change the steepness (slope) of a function. However, working
through many examples for which the amount earned per kilometer (the
slope) is held constant will help students see, in context, that changing the
starting bonus does not affect the amount being earned per kilometer, which
is how the steepness or slope of the function is determined. Ultimately, by
establishing the meaning of y-intercept in the context of the walkathon and
by applying that meaning to the different representations of a function, the
confusion of slope and y-intercept is significantly minimized for students.

Negative y-intercepts are introduced using the idea of debt. In this case,
students have to pay off a starter offer amount. For example, a student in
one of our studies suggested that if she owed ten dollars on her credit card
and paid off one dollar every time she walked a kilometer, she would have
to start at minus ten dollars. Then after one kilometer, she would pay off one
dollar and still be nine dollars in debt, then eight, then seven, etc. Students
can construct tables, graphs, and equations for such situations that they
invent and perhaps share with a partner or the class. The writing of the



TEACHING AND LEARNING FUNCTIONS 383

equations for these functions may take different forms at first. Many students
choose to adhere to the notion that the starter offer is “added” in the equa-
tion. Thus an equation for a function such as that described above would
look like $ = 1 • km + –10. While students are consolidating the concept of
y-intercept and distinguishing it from slope, we recommend that they be
allowed to write equations in this way. An alternative, more conventional
format may be suggested by repeating the function and writing it in conven-
tional notation alongside the student-constructed expression. Again, we stress
the importance of students’ developing a conceptual framework for these
difficult concepts, which can be formalized over time once the ideas are
firmly in place.

Following is a short classroom exchange between a teacher and a stu-
dent. The context of earning five dollars per day for a paper route had
already been developed by the teacher for an earlier teaching example. The
teacher continued with this context in introducing linear functions with nega-
tive y-intercepts and positive slopes.

Teacher We owe 90 dollars, so think of it as a negative
amount we have and over time we’re coming
up toward zero. We’re coming toward breaking
even; towards no longer being in debt. So
every day that goes 5 dollars toward zero
[referring to and constructing both a graph and
a table]. So up by 5, up by 5, up by 5, and so
on. What are these differences [referring to the
y values in the table]?

Justin Positive 5.

Teacher Ya, we’re going up by 5 so as we go across 1
we go up by 5.

In the lessons on nonlinear functions, the starter offer idea is also ap-
plied. Generally, students quickly see that including the starter offer in a
curved-line function has the same effect as it does on straight-line functions.
That is, the steepness of the line (or curve) is not altered by changing the
starter offer, only the place at which the function meets the vertical axis in a
graph. The result is that each point on the curve is shifted up (or down) by
the starter offer amount.

A suggested follow-up activity that addresses both slope and y-inter-
cept is to have students, either individually or in pairs, invent two functions
that will allow them to earn exactly $153 upon completing a ten-kilometer
walkathon. Both strategies must produce straight lines. We ask students to
construct tables, graphs, and equations to show their work, and also ask
them to identify the slope and y-intercept of each function. Individuals or
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pairs of students then show their functions to the whole group. Samples of
student work are shown in Box 8-4. We also challenge students to work
“backwards,” that is, to find what the starter offer would have to be if
the slope were 10, or what the slope would have to be if the starter offer
were 20.

Summary of Principle #2 in the Context of Learning y-Intercept. We
have used a lesson on y-intercept to illustrate how students connect their
factual/procedural and conceptual knowledge within the instructional bridging
context of a walkathon. The walkathon context is intended to help students
relate their new and existing knowledge within an organized conceptual
framework in ways that facilitate efficient retrieval of that knowledge. The
idea of a “starter offer” gives students a reasonably familiar situation that
provides a context for learning y-intercept—ordinarily a relatively abstract
and difficult mathematical topic that is often confused with slope in stu-
dents’ understanding of linear function. In our approach, students still learn
the notations, symbols, words, and methods necessary for identifying the y-
intercept of a function (linear or nonlinear). However, they acquire that
knowledge in context and initially without algorithms, and with a depth of
understanding and attribution of meaning that minimize the procedural and
conceptual difficulties many students experience with the topic.

Example Lesson 3: Operating on y = x2

After the first four lessons, which take place in the classroom, students
move to a computer environment where they work with spreadsheet tech-
nology to consolidate and apply the concepts introduced in the classroom
instruction and to extend their understandings to new situations. The par-
ticular lesson we use for illustrating principle 3, developing metacognitive
skills, is the fourth in the series of computer activities.

The Lesson. Pairs of students use prepared spreadsheet files to work with a
computer screen such as that seen in Figure 8-3. Students are asked to
change specific parameters in the function y = ax2 + b to move the graph
through preplotted colored points. The file is designed so the students can
change the value of just the exponent, the coefficient of x2, the y-intercept,
or any combination of these. With each change, the graph and table of
values change instantly and automatically to reflect the numeric (tabular)
and graphic (spatial) implications of that change. For example, students are
asked to describe and record what happens to the graph and the “Y” column
of the table of values when the exponent in y = x2 is changed to 3, to 4, and
then more generally to any number greater than 2. Students are then asked
to describe and record what happens to the curve when x2 is multiplied by
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BOX 8-4 Two Different Student Solutions to an Open-Ended Problem

a value larger than 1, smaller than 1 but greater than 0, and less than 0. They
are then asked to compare the tables and graphs for y = x2, y = 2 * x2, y = 3
* x2, y = 4 * x2, etc. and to describe in words what patterns they find. Finally,
students are asked to compare the table of values for y = 2 * x2 and y = -2 *
x2 and describe what they notice.
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FIGURE 8-3 Sample computer screen. In this configuration, students can change the value of
a, n, or b to effect immediate and automatic changes in the graph and the table. For example,
if students change the value of b, just the y-intercept of the curve will change. If students change
a or n to a positive value other than 1, the degree of steepness of the curve will change. If
students change the value of a to a negative value, the curve will come down. All graphic
patterns will be reflected in the table of values.

Students must employ effective metacognitive strategies to negotiate and
complete these computer activities. Opportunities for exploring, persever-
ing, and knowing when and how to obtain help are abundant. Metacognitive
activity is illustrated in the following situation, which has occurred among
students from middle school through high school who have worked through
these activities.

When students are asked to change the parameters of y = x2 to make it
curve down and go through a colored point that is in the lower right quad-
rant, their first intuition is often to make the exponent rather than the coef-
ficient negative. When they make that change, they are surprised to find that
the graph changes shape entirely and that a negative exponent will not
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satisfy their needs. By trying a number of other possible alterations (perse-
vering), some students discover that they need to change the coefficient of
x2 rather than the exponent to a negative number to make the function curve
down. It is then a matter of further exploration and discovery to find the
correct value that will make the graph pass through the point in question.
Some students, however, require support to discover this solution. Some try
to subtract a value from x2 but are then reminded by the result they see on
the computer screen that subtracting an amount from x2 causes a downward
vertical shift of the graph. Drawing students’ attention to earlier exercises in
which they multiplied the x in y = x by a negative number to make the
numeric pattern and the graph go down encourages them to apply that
same notion to y = x2. To follow up, we suggest emphasizing for students
the numeric pattern in the tables of values for decreasing curves to show
how the number pattern decreases with a negative coefficient but not with a
negative exponent.

Following is a typical exchange between the circulating teacher and a
pair of students struggling with flipping the function y = x2 (i.e., reflecting it
in the x-axis). This exchange illustrates the use of metacognitive prompting
to help students supervise their own learning by suggesting the coordina-
tion of conclusions drawn from one representation (e.g., slope in linear
functions) with those drawn from another (e.g., slope in power functions).

Teacher How did you make a straight line come down
or change direction?

John We used minus.

Teacher How did you use “minus”?

Pete Oh yeah, we times it by minus something.

Teacher So . . . how about here [pointing at the x2]?

John We could times it by minus 2 [typing in x2 • -2].
There! It worked.

Without metacognitive awareness and skills, students are at risk of miss-
ing important inconsistencies in their work and will not be in a position to
self-correct or to move on to more advanced problem solving. The example
shown earlier in Figure 8-1a involves a student not reflecting on the incon-
sistency between a negative slope in his equation and a positive slope in his
graph. Another sort of difficulty may arise when students attempt to apply
“rules” or algorithms they have been taught for simplifying a solution to a
situation that in fact does not warrant such simplification or efficiency.

For example, many high school mathematics students are taught that
“you only really need two points to graph a straight line” or “if you know
it’s a straight line, you only need two points.” The key phrase here is “if you
know it’s a straight line.” In our research, we have found students applying
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FIGURE 8-4

that two-point rule for graphing straight lines to the graphing of curved-line
functions. In the example shown in Figure 8-4, an eleventh-grade advanced
mathematics student who had been learning functions primarily from a
textbook unit decided to calculate and plot only two points of the function
y = x2 +1 and then to join them incorrectly with a straight line. This student
had just finished a unit that included transformations of quadratic functions
and thus presumably knew that y = x2 makes a parabola rather than a
straight line. What this student did not know to perform, or at least exer-
cise, was a metacognitive analysis of the problem that would have ruled out
the application of the two-points rule for graphing this particular function.

Summary of Principle #3 in the Context of Operating on y = x2. The
general metacognitive opportunities for the computer activities in our cur-
riculum are extensive. Students must develop and engage their skills involv-
ing prediction, error detection, and correction, as well as strategies for scien-
tific inquiry such as hypothesis generating and testing. For instance, because
there are innumerable combinations of y-intercept, coefficient, and expo-
nent that will move y = x2 through each of the colored points, students must
recognize and acknowledge alternative solution paths. Some students may
fixate on the steepness of the curve and get as close to the colored points as
possible by adjusting just the steepness of the curve (by changing either the
exponent or the coefficient of x2) and then changing the y-intercept. Others
may begin by selecting a manageable y-intercept and then adjust the steep-
ness of the curve by changing the exponent or the coefficient. Others may
use both strategies equally. Furthermore, students must constantly be pre-
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dicting the shapes and behaviors of the functions with which they are work-
ing and adjusting and readjusting their expectations with respect to the math-
ematical properties and characteristics of linear and nonlinear functions.

SUMMARY
Sometimes mathematics instruction can lead to what we refer to as “un-

grounded competence.” A student with ungrounded competence will dis-
play elements of sophisticated procedural or quantitative skills in some con-
texts, but in other contexts will make errors indicating a lack of conceptual
or qualitative understanding underpinning these skills. The student solution
shown earlier in Figure 8-1a illustrates such ungrounded competence. On
the one hand, the student displays elements of sophisticated skills, including
the slope formula and negative and fractional coefficients. On the other
hand, the student displays a lack of coordinated conceptual understanding
of linear functions and how they appear in graphical, tabular, and symbolic
representations. In particular, he does not appear to be able to extract quali-
tative features such as linearity and the sign of the slope and to check that all
three representations share these qualitative features.

The curricular approach described in this chapter is based on cognitive
principles and a detailed developmental model of student learning. It was
designed to produce grounded competence whereby students can reason
with and about multiple representations of mathematical functions flexibly
and fluently. Experimental studies have shown that this curriculum is effec-
tive in improving student learning beyond that achieved by the same teach-
ers using a more traditional curriculum. We hope that teachers will find the
principles, developmental model, and instructional examples provided here
useful in guiding their curriculum and teaching choices.

We have presented three example lessons that were designed within
one possible unifying context. Other lessons and contexts are possible and
desirable, but these three examples illustrate some key points. For instance,
students may learn more effectively when given a gradual introduction to
ideas. Our curriculum employs three strategies for creating such a gradual
introduction to ideas:

• Starting with a familiar context: Contexts that are familiar to students,
such as the walkathon, allow them to draw on prior knowledge to think
through a mathematical process or idea using a concrete example.

• Starting with simple content: To get at the essence of the idea while
avoiding other, distracting difficulties, our curriculum starts with mathemati-
cal content that is as simple as possible—the function “you get one dollar for
every kilometer you walk” (y = x).
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• Focusing on having students express concepts in their own language
before learning and using conventional terminology: To the extent that a
curriculum initially illustrates an idea in an unfamiliar context or with more-
complex content, students may be less likely to be able to construct or
invent their own language for the idea. Students may better understand and
explain new ideas when they progress from thinking about those ideas us-
ing their own invented or natural language to thinking about them using
formal conventional terms.

A risk of simplicity and familiarity is that students may not acquire the
full generality of relevant ideas and concepts. Our curriculum helps students
acquire correct generalizations by constructing multiple representations for
the same idea for the same problem at the same time. Students make com-
parisons and contrasts across representations. For example, they may com-
pare the functions y = .5x, y = 2x, and y = 10x in different representations
and consider how the change in slope looks in the graph and how the table
and symbolic formula change from function to function. We also emphasize
the use of multiple representations because it facilitates the necessary bridg-
ing between the spatial and numerical aspects of functions. Each representa-
tion has both spatial and numerical components, and students need experi-
ence with identifying and constructing how they are linked.

As illustrated earlier in Figure 8-1a, a curriculum that does not take this
multiple-representation approach can lead students to acquire shallow ideas
about functions, slope, and linearity. The student whose response is shown
in that figure had a superficial understanding of how tables and graphs are
linked: he could read off points from the graph, but he lacked a deep under-
standing of the relationship between tables and graphs and the underlying
idea of linearity. He did not see or “encode” the fact that because the graph
is linear, equal changes in x must yield equal changes in y, and the values in
the table must represent this critical characteristic of linearity.

The curriculum presented in this chapter attempts to focus limited in-
structional time on core conceptual understanding by using multiple repre-
sentations and generalizing from variations on just a few familiar contexts.
The goal is to develop robust, generalizable knowledge, and there may be
multiple pathways to this end. Because instructional time is limited, we de-
cided to experiment with a primary emphasis on a single simple, real-world
context for introducing function concepts instead of using multiple contexts
or a single complex context. This is not to say that students would not
benefit from a greater variety of contexts and some experience with rich,
complex, real-world contexts. Other contexts that are relevant to students’
current real-world experience could help them build further on prior knowl-
edge. Moreover, contexts that are relevant to students’ future real-world
experiences, such as fixed and variable costs of production, could help them
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in their later work life. Since our lessons can be accomplished in anywhere
from 3 to 6 weeks (650 minutes), there is sufficient time for other activities to
supplement and extend students’ experience.

In addition to providing a gradual introduction to complex ideas, a
key point illustrated by our lessons is that curriculum should be mathemati-
cally sound and targeted toward high standards. Although the lessons de-
scribed here start gradually, they quickly progress to the point at which
students work with and learn about sophisticated mathematical functions at
or beyond what is typical for their grade level. For instance, students progress
from functions such as y = x to y = 10 – .4x in their study of linear functions
across lessons 1 to 3, and from y = x2 to y = (x – 2)2 + 4 in their study of
nonlinear functions across lessons 4 to 8.

We do not mean to suggest that this is the only curriculum that promotes
a deep conceptual understanding of functions or that illustrates the prin-
ciples of How People Learn. Indeed, it has important similarities, as well as
differences, with other successful innovations in algebra instruction, such as
the Jasper Woodbury series and Cognitive Tutor Algebra (previously called
PUMP), both described in How People Learn. All of these programs build on
students’ prior knowledge by using problem situations and making connec-
tions among multiple representations of function. However, whereas the
Jasper Woodbury series emphasizes rich, complex, real-world contexts, the
approach described in this chapter keeps the context simple to help students
perceive and understand the richness and complexity of the underlying math-
ematical functions. And whereas Cognitive Tutor Algebra uses a wide variety
of real-world contexts and provides intelligent computer tutor support, the
approach described here uses spreadsheet technology and focuses on a
single context within which a wide variety of content is illustrated.

All of these curricula, however, stand in contrast to more traditional
textbook-based curricula, which have focused on developing the numeric/
symbolic and spatial aspects of functions in isolation and without particular
attention to the out-of-school knowledge that students bring to the class-
room. Furthermore, these traditional approaches do not endeavor to con-
nect the two sorts of understandings, which we have tried to show is an
essential part of building a conceptual framework that underpins students’
learning of functions and ultimately their learning in related areas.
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NOTES
1. The study of functions, as we define it here, overlaps substantially with the

topic of “algebra” traditionally taught in the United States in ninth grade, though
national and many state standards now recommend that aspects of algebra be
addressed in earlier grades (as is done in most other countries). Although
functions are a critical piece of algebra, other aspects of algebra, such as equa-
tion solving, are not addressed in this chapter.

2. Thomas, 1972, p. 17.
3. Goldenberg, 1995; Leinhardt et al., 1990; Romberg et al., 1993.
4. Nathan and Koedinger, 2000.
5. Koedinger and Nathan, 2004.
6. Koedinger and Nathan, 2004.
7. Koedinger et al., 1997.
8. Kalchman, 2001.
9. Schoenfeld et al., 1993.

10. Schoenfeld et al., 1987.
11. Schoenfeld et al., 1998, p. 81.
12. Chi et al., 1981.
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9
Scientific Inquiry and

How People Learn
John D. Bransford and M. Suzanne Donovan

Many of us learned science in school by studying textbooks that re-
ported the conclusions of what scientists have learned over the decades. To
know science meant to know the definitions of scientific terms and impor-
tant discoveries of the past. We learned that an insect has three body parts
and six legs, for example, and that water (H

2
O) is a molecule composed of

two hydrogen atoms and one oxygen atom. We learned that the planets in
our solar system revolve around the sun and that gravity holds us to the
earth. To be good at science meant to reproduce such information as accu-
rately and completely as possible. The focus of this kind of instruction was
on what scientists know.

Of course, many of us were also introduced to “the scientific method.”
This typically involved some variation on steps such as “formulate a hypoth-
esis, devise a way to test the hypothesis, conduct your test, form conclusions
based on your findings, and communicate what you have found.” Often
information about the scientific method was simply one more set of facts to
be memorized. But some of us were given opportunities to use the scientific
method to perform hands-on experiments. We might have tested whether
wet or dry paper towels could hold the most weight; whether potential
insulators such as aluminum foil, paper, or wool were the best ways to keep
a potato hot; and so forth. This emphasis on the scientific method was
designed to provide insights into how scientists know. Much of this science
instruction—both the “what” and the “how”—was inconsistent with the prin-
ciples highlighted in How People Learn (see Chapter 1).

Two major national efforts conducted during the last decade have pro-
vided new guidelines and standards for creating more effective science edu-
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cation. The new guidelines include an emphasis on helping students de-
velop (1) familiarity with a discipline’s concepts, theories, and models; (2)
an understanding of how knowledge is generated and justified; and (3) an
ability to use these understandings to engage in new inquiry.1 At first glance,
the traditional science instruction described above appears to fit these guide-
lines quite well. The first (emphasis on familiarity with a discipline’s con-
cepts, theories, models) appears to focus on what scientists know; the sec-
ond (emphasis on understanding how knowledge is generated and justified)
how they know. If we let students engage in experimentation, this appears
to comport with the third guideline (emphasis on an ability to engage in
new inquiry). Like Lionni’s fish (see Chapter 1), we can graft the new guide-
lines onto our existing experience.

But both the new guidelines and the principles of How People Learn
suggest a very different approach to teaching. Simply telling students what
scientists have discovered, for example, is not sufficient to support change
in their existing preconceptions about important scientific phenomena.2  Simi-
larly, simply asking students to follow the steps of “the scientific method” is
not sufficient to help them develop the knowledge, skills, and attitudes that
will enable them to understand what it means to “do science” and partici-
pate in a larger scientific community. And the general absence of metacognitive
instruction in most of the science curricula we experienced meant that we
were not helped in learning how to learn, or made capable of inquiry on our
own and in groups. Often, moreover, we were not supported in adopting as
our own the questioning stance and search for both supporting and conflict-
ing evidence that are the hallmarks of the scientific enterprise.

The three chapters that follow provide examples of science instruction
that are different from what most of us experienced. They are also consis-
tent with the intent of the guidelines of the National Research Council3  and
the American Association for the Advancement of Science,4 as well as the
principles of How People Learn. The authors of these chapters do indeed
want to help students learn what scientists know and how they know, but
they go about it in ways that are quite different from more traditional sci-
ence instruction.

The three chapters focus, respectively, on light (elementary school),
physical forces such as gravity (middle school), and genetics and evolution
(high school). They approach these topics in ways that support students’
abilities to (1) learn new concepts and theories with understanding; (2)
experience the processes of inquiry (including hypothesis generation, mod-
eling, tool use, and social collaboration) that are key elements of the culture
of science; and (3) reflect metacognitively on their own thinking and partici-
pation in scientific inquiry. Important principles of learning and instruction
are discussed below.
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PRINCIPLE #1: ADDRESSING PRECONCEPTIONS
It is often claimed that “experience is the best teacher.” While this is

arguably true in many contexts, what we learn from our experience varies
considerably in terms of its generality and usefulness. With respect to sci-
ence, everyday experiences often reinforce the very conceptions of phe-
nomena that scientists have shown to be limited or false, and everyday
modes of reasoning are often contrary to scientific reasoning.

Everyday Concepts of Scientific Phenomena

Students bring conceptions of everyday phenomena to the classroom
that are quite sensible, but scientifically limited or incorrect. For example,
properties are generally believed to belong to objects rather than to emerge
from interactions.5  Force, for instance, is seen as a property of bodies that
are forceful rather than an interaction between bodies.6  As described in
Chapter 10, students believe objects to “be” a certain color, and light can
either allow us to see the color or not. The notion that white light is com-
posed of a spectrum of colors and that the specific colors absorbed and
reflected by a particular object give the object the appearance of a particular
color is not at all apparent in everyday experience. Scientific tools (prisms)
can break white light into colors. But without tools, students see only white
light and objects that appear in different colors (rainbows are an exception,
but for the untrained they are a magnificent mystery).

Students enter the study of science with a vast array of such preconcep-
tions based on their everyday experiences. Teachers will need to engage
those ideas if students are to understand science. The instructional challenge
of working with students’ preconceptions varies because some conceptions
are more firmly rooted than others. Magnusson and Palincsar (Chapter 10)
note that some elementary students in their classrooms believe that shadows
are “objects,” but this preconception is easily dispelled with fairly simple
challenges. Other preconceptions, such as the idea that only shiny objects
reflect light, require much more time and effort to help students change their
ideas.

It is important to remember that most preconceptions are reasonable
based on students’ everyday experiences. In the area of astronomy, for ex-
ample, there is a widespread belief that the earth’s seasons are caused by the
distance of the earth from the sun rather than by the angle of the earth’s axis
with respect to the sun, and it is very difficult for students to change these
preconceptions.7  Many experiences support the idea that distance from a
heat source affects temperature. The closer we stand to radiators, stoves,
fireplaces, and other heat sources, the greater is the heat.
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Interestingly, there are also experiences in which we can manipulate the
intensity of heat by changing the angle of a heat source—by pointing a hair
dryer on one’s head at different angles, for example. But without the ability
to carefully control distance from the head or the tools to measure small
changes in temperature (and without some guidance that helps people think
to do this experiment in the first place), the relationship between heat and
angle with respect to the heat source can easily be missed.

Everyday Concepts of Scientific Methods,
Argumentation, and Reasoning

Students bring ideas to the classroom not only about scientific phenom-
ena, but also about what it means to “do science.” Research on student
thinking about science reveals a progression of ideas about scientific knowl-
edge and how it is justified.8  The developmental sequence is strikingly simi-
lar to that described in Chapter 2 regarding student reasoning about histori-
cal knowledge. Scientific knowledge is initially perceived as right or wrong.
Later, discrepant ideas and evidence are characterized as “mere opinion,”
and eventually as “informed” and supported with evidence.9  As in history,
the sequence in science is more predictable than the timing. Indeed, many
students may not complete the sequence without instructional support. In
several studies, a large proportion of today’s high school students have been
shown to be at the first stage (right or wrong) when thinking about various
phenomena.10

Research has also explored students’ reasoning regarding scientific ex-
perimentation, modeling, the interpretation of data, and scientific argumen-
tation. Examples of conceptions that pose challenges for understanding the
scientific enterprise are summarized in Box 9-1. While research findings
have been helpful in identifying problematic conceptions, less is known
regarding the pace at which students are capable of moving along the devel-
opmental trajectory, or undergoing conceptual change, with effective in-
structional experiences. The chapters that follow provide many compelling
examples demonstrating the kinds of changes in student thinking that care-
fully designed instructional experiences can support.

Conceptual Change

How People Learn emphasizes that instruction in any subject matter that
does not explicitly address students’ everyday conceptions typically fails to
help them refine or replace these conceptions with others that are scientifi-
cally more accurate. In fact, the pioneering research that signaled the tenac-
ity of everyday experience and the challenge of conceptual change was
done in the area of science, especially physics.11  One of the pioneers was
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Jim Minstrell, a high school physics teacher and author—along with Pamela
Kraus—of Chapter 11. That chapter begins with Minstrell describing an ex-
perience in his classroom that prompted him to rethink how he taught phys-
ics. He was teaching about universal gravitation and forces at a distance. He
found that his students did reasonably well when asked to compute force
based on “what if” questions involving a change in the distance of an object
from a planet. He found, however, that when asked to think qualitatively
about the situation, most of his students were basing their thinking on ideas
that were reasonable from their everyday perspective, yet widely discrepant
from the ways physicists have learned to think about these situations. For
example, when Minstrell asked students to assume that there was no air or
friction affecting an object pulling a weight, a number of the students of-
fered that everything would just float away since that is how things work in
outer space.

Minstrell notes that this experience raised fundamental questions in his
mind, such as what good it is to have students know the quantitative relation
or equation for gravitational force if they lack a qualitative understanding of
force and concepts related to the nature of gravity and its effects. It became
clear that simply teaching students about abstract principles of physics pro-
vided no bridge for changing their preconceptions. Minstrell and Kraus dis-
cuss ways of teaching physics that are designed to remedy this problem. A
study suggesting the advantages of assessing student preconceptions and
designing instruction to respond to those preconceptions is summarized in
Box 9-2.

The authors of all three of the following chapters pay close attention to
the preconceptions that students hold about subject matter. For example,
the elementary school students discussed by Magnusson and Palincsar (Chap-
ter 10) had had many years of experience with light, darkness, and shad-
ows—and they brought powerful preconceptions to the classroom. The high
school students discussed by Stewart, Cartier, and Passmore (Chapter 12)
came with many beliefs about genetics and evolution that are widespread
among the adult population, including the beliefs that acquired characteris-
tics can be passed on to offspring, and that evolution is purposeful and
proceeds toward a specific goal.

The authors of each chapter focus on issues of conceptual change as a
major goal for their instruction. This view of learning is quite different from
the more traditional view that learning simply involves the addition of new
facts and skills to an existing knowledge base. Understanding scientific knowl-
edge often requires a change in—not just an addition to—what people no-
tice and understand about everyday phenomena.12

The chapters that follow focus specifically on creating conditions that
allow students to undergo important changes in their thinking and noticing.
Everything from the choice of topics to be explored to the procedures for
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BOX 9-1 Student Conceptions of Knowledge Generation and
Justification in Science

Research into students’ thinking about scientific knowledge and processes
reveals some common misconceptions and limited understandings (sum-
marized by AAAS13 ):

• Experimentation: Upper elementary- and middle-school stu-
dents may not understand experimentation as a method of testing ideas,
but rather as a method of trying things out or producing a desired out-
come.14  With adequate instruction, it is possible to have middle school
students understand that experimentation is guided by particular ideas
and questions and that experiments are tests of ideas. . . . Students of all
ages may overlook the need to hold all but one variable constant, al-
though elementary students already understand the notion of fair com-
parisons, a precursor to the idea of “controlled experiments”15 . . . . Stu-
dents tend to look for or accept evidence that is consistent with their
prior beliefs and either distort or fail to generate evidence that is incon-
sistent with these beliefs. These deficiencies tend to mitigate over time
and with experience.16

• Models: Middle school and high-school students typically think
of models as physical copies of reality, not as conceptual representations.17

They lack the notion that the usefulness of a model can be tested by com-
paring its implications to actual observations. Students know models can

hypothesis testing and discussion contributes to the successful achievement
of this goal. For example, Magnusson and Palincsar note that the study of
light allows children to see the world differently and challenge their pre-
conceptions. The examples discussed in the chapters on physics and genet-
ics also illustrate many rich opportunities for students to experience and
understand phenomena from new perspectives. Such opportunities for stu-
dents to experience changes in their own noticing, thinking, and under-
standing are made possible because of another feature of the programs
discussed in these chapters: they all integrate content learning with inquiry
processes rather than teaching the two separately. This point is elaborated
below.
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be changed but changing a model for them means (typical of high-school
students) adding new information or (typical of middle-school students)
replaing a part that was made wrong (p. 26).

• Interpretation of Data: Students of all ages show a tendency
to uncritically infer cause from correlations.18  Some students think even
a single co-occurance of antecedent and outcome is always sufficient to
infer causality. Rarely do middle-school students realize the indetermi-
nacy of single instances, although high-school students may readily real-
ize it. Despite that, as covariant data accumulate, even high-school stu-
dents will infer a causal relation based on correlations. Further, students
of all ages will make a causal inference even when no variation occurs in
one of the variables. For example, if students are told that light-colored
balls are used successfully in a game, they seem willing to infer that the
color of the balls will make some difference in the outcome even without
any evidence about dark-colored balls.

• Inadequacies in Arguments: Most high-school students will
accept arguments based on inadequate sample size, accept causality from
contiguous events, and accept conclusions based on statistically insig-
nificant differences.19 More students can recognize these inadequacies
in arguments after prompting (for example, after being told that the con-
clusions drawn from the data were invalid and asked to state why).20

PRINCIPLE #2: KNOWLEDGE OF WHAT IT MEANS
TO “DO SCIENCE”

Feynman characterized the scientific method in three words: observa-
tion, reason, and experiment.21  Einstein emphasized the importance of imagi-
nation to scientific advancement, making it possible for the reasoning that
follows observation to go beyond current understanding. This view of sci-
ence extolled by some of its greatest minds is often not recognizable in
classroom efforts to teach students how to do science.

We have noted that in the past, teaching the processes, not just the
outcomes, of science often involved no more than memorizing and repro-
ducing the steps of an experiment. However, even when science instruction
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BOX 9-2 Diagnosing Preconceptions in Physics

A computer-based DIAGNOSER program was designed to help teachers elicit and
work with student preconceptions in physics.22 The program assesses students’
beliefs about various physical phenomena and provides recommended activities
that help students reinterpret phenomena from a physicist’s perspective. The teacher
uses the feedback from DIAGNOSER to guide instruction.

Data were collected for students of three teachers at Mercer Island School
who used the program and were compared with data for students in a comparable
school where the program was not used in physics instruction. Data were col-
lected on Miller Analogies Test math scores for students from both schools, so
that individual students were compared with others who had the same level of
mathematics achievement. In the figure below, the math scores for both groups
on the same mechanics final exam are plotted. The results suggest that students’
understanding of important concepts in physics was substantially better in the
Mercer Island school, and this result was true for students at all mathematics
achievement levels.
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is shifted in the direction of engaging in scientific inquiry (as is happening
more frequently in today’s classrooms), it can be easy to emphasize giving
students “recipes for experiments”—hands-on activities that students engage
in step by step, carefully following instructions, using measurement tools,
and collecting data. These lockstep approaches shortchange observation,
imagination, and reasoning. Experimenting may mean that students are asked
to conduct a careful sequence of activities in which the number of quarters
a wet and dry paper towel can hold is compared in multiple trials, and data
are carefully collected and averaged. Yet the question that needs investiga-
tion is often unclear, and the reasoning that would lead one to think that
either a wet or a dry paper towel would be stronger can remain a mystery to
students. As in specific content areas in science, information about the enter-
prise of science can be passed along to students without an opportunity for
them to understand conceptually what that enterprise is about. Indeed, many
students believe that everything they learn in science classes is factual; they
make no distinction between observation and theory.23

The science programs discussed in the following chapters represent a
very different approach to scientific inquiry. They do not involve simply
setting aside “inquiry time” during which students conduct experiments that
are related in some way to the content they are learning. Instead, students
learn the content by actively engaging in processes of scientific inquiry.
Students may still learn what others have discovered about a phenomenon
(see Magnusson and Palincsar’s discussions of helping students learn from
“second-hand knowledge”). But this is different from typical textbook exer-
cises because the value of reading about others’ discoveries is clear to stu-
dents—it helps them clarify issues that arise in their own inquiry. Reading to
answer a question of interest is more motivating than simply reading be-
cause someone assigned it. It also changes how people process what they
read.24

Opportunities to learn science as a process of inquiry (rather than sim-
ply having “inquiry times” that are appended to an existing curriculum) has
important advantages. It involves observation, imagination, and reasoning
about the phenomena under study. It includes the use of tools and proce-
dures, but in the context of authentic inquiry, these become devices that
allow students to extend their everyday experiences of the world and help
them organize data in ways that provide new insights into phenomena.25

Crucial questions that are not addressed by lockstep experimental exercises
include the following: Where do ideas for relevant observations and experi-
ments come from in the first place? How do we decide what count as rel-
evant comparison groups? How can sciences (e.g., astronomy, paleontol-
ogy) be rigorously empirical even though they are not primarily experimental?
Definitions of what counts as “good science” change as a function of what is
being studied and current theorizing about the ideas being investigated. A



406 HOW STUDENTS LEARN: SCIENCE IN THE CLASSROOM

simple but informative example of how definitions of good scientific meth-
ods depend on knowledge of the conceptual issues one is studying is pro-
vided in Box 9-3.

One of the most important aspects of science—yet perhaps one of the
least emphasized in instruction—is that science involves processes of imagi-
nation. If students are not helped to experience this for themselves, science
can seem dry and highly mechanical. Indeed, research on students’ percep-
tions of science indicates that “they see scientific work as dull and rarely
rewarding, and scientists as bearded, balding, working alone in the labora-
tory, isolated and lonely.26  Few scientists we know would remain in the field
of science if it were as boring as many students believe.

Generating hypotheses worth investigating was for Einstein an extremely
important part of science, where the “imagination of the possible” played a
major role. Nobel Laureate Sir Peter Medawar also emphasizes the role of
imagining the possible:

Like other exploratory processes, [the scientific method] can
be resolved into a dialogue between fact and fancy, the
actual and the possible; between what could be true and
what is in fact the case. The purpose of scientific enquiry is
not to compile an inventory of factual information, nor to
build up a totalitarian world picture of Natural Laws in which
every event that is not compulsory is forbidden. We should
think of it rather as a logically particular structure of justifi-
able beliefs about a Possible World—a story which we
invent and criticize and modify as we go along, so that it
ends by being, as nearly as we can make it, a story about
real life.27

The importance of creative processes in the conduct of science can also
be understood by exploring the types of reasoning and investigative choices
that have made some scientific investigations particularly productive and
feasible. For example, Mendel’s critical insight about the discrete nature of
heredity was a consequence of his selecting peas for his experiment (see
Box 9-4). Other major advances in understanding heredity were equally
dependent on scientists finding an approach to investigation that would
allow the complexity of the world to be sufficiently simplified to uncover
fundamental relationships.28 This very engaging dimension of the scientific
enterprise is hidden when students’ inquiry experience is limited to the
execution of step-by-step experiments.

The chapters that follow present a variety of ways to help students
experience the excitement of doing science in a way that does justice to all
stages of the process. The authors describe experiences that allow students
to see everyday phenomena with new eyes. They provide opportunities for
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both inventing and testing models of invisible processes, adopting and some-
times adapting tools to make the invisible visible. Students reason about
relationships between theory and data. Furthermore, they do so by creating
classroom communities that simulate the important roles of scientific com-
munities in actual scientific practice.29  This involves paying careful attention
to the arguments of others, as well as learning the benefits of group interac-
tion for advancing one’s own thinking.

PRINCIPLE #3: METACOGNITION
The third principle of How People Learn emphasizes the importance of

taking a metacognitive approach to instruction. Much of the research on
metacognition focused on the comprehension of text (see Chapter 1) clearly
applies to science, where texts can be quite complex and difficult for many
students to comprehend. However, more recent research targeted specifi-
cally to the monitoring of and reflection on scientific reasoning has also
shown promising effects.

A striking example is the work of White and Frederiksen (see Box 9-5),
who designed a physics inquiry curriculum called ThinkerTools. The cur-
riculum uses inquiry instruction to engage students in investigations that
allow them to confront their misconceptions and develop a scientific under-
standing of force and motion. Students taught with the ThinkerTools cur-
riculum displayed a deeper conceptual understanding than students taught
with a traditional curriculum. This advantage remained even when the
ThinkerTools students were in inner-city schools and were compared with
students in suburban schools, and when the ThinkerTools students were
several years younger. White and Frederiksen later extended the curriculum
to include a metacognitive component—what they refer to as “reflective
assessment.” Students taught with the curriculum including this metacognitive
component outperformed those taught with the original curriculum. Gains
were particularly striking for lower-achieving students.

Another study, by Lin and Lehman,30 demonstrates that metacognitive
instruction can be effective for college students. In their experiments, stu-
dents learned about strategies for controlling variables in a complex science
experiment that was simulated via computer. As they studied, some received
periodic questions that asked them to reflect on—and briefly explain—what
they were doing and why; others did not receive these questions. On tests of
the extent to which students’ knowledge transferred to new problems, those
in the metacognitive group outperformed those in the comparison groups.

The authors of the following chapters do not necessarily label their
relevant instructional moves as “metacognitive,” but they emphasize helping
students reflect on their role in inquiry and on the monitoring and critiquing
of one’s own claims, as well as those of others. They also emphasize that
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BOX 9-3 Evaluating the Methods Used in an Experiment

Imagine being asked to evaluate the following experiment and
conclusions:

A group of biologists compare data from across the world
and note that frogs seem to be disappearing in an alarming
number of places. This deeply concerns them, because the
frogs may well be an indicator species for environmental
changes that could hurt us all. The biologists consider a num-
ber of hypotheses about the frogs’ disappearance. One is that
too much ultraviolet light is getting through the ozone layer.

One group of researchers decides to test the ultraviolet light
hypothesis. They use five different species of frogs—an equal
number of male and female. Half of the frogs receive constant
doses of ultraviolet light for a period of 4 months; this is the
experimental group. The other half of the frogs—the control
group—are protected so they receive no ultraviolet light.

At the end of the 4 months, the biologists find that there is
no difference in death rates between the frogs in the experi-
mental and control groups. This finding suggests that ultra-
violet light is probably not the cause of the frogs’ demise.

What do you think about the biologists’ experiments and
conclusions? Are there questions you would want to ask be-
fore accepting their conclusions? Are there new experiments
that you would want to propose?

This problem has been addressed by hundreds of individuals in classes
and workshops.31 Many of these individuals know a considerable amount
about experimental design and typically note a number of strengths and
weaknesses about the experiment. Strengths include the fact that it had
an experimental/control design that involved several different species of
frogs, used stratified random sampling, and so forth. Weaknesses include
such concerns as the possibility that the doses of ultra-violet light that
were used were too weak; that the light was provided for too short a time
(i.e., only 4 months); or that the experimenters did not wait long enough
to see the effects of the ultraviolet light, so maybe they should have looked
at differences in illness between the two groups rather than comparing
the death rates.
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Such concerns are valid and relatively sophisticated, but they reflect
a lack of knowledge about general principles of biology—principles that
raise serious questions about the preceding experiment. In particular, very
few people question the fact that only adult frogs were used in the ex-
periment (multimedia materials viewed by participants showed clearly that
the frogs were all adults). To understand potential environmental effects
on a species, one must look at the life cycle of the species and attempt to
identify points in that cycle where the species might be the most vulner-
able. For example, when DDT endangered eagles, it did so not by killing
the adults but by making the egg shells so brittle that they broke before
the offspring could hatch. Overall, what counts as an adequate experi-
mental or empirical design is strongly affected by the current state of
knowledge of a particular field. Learning about “the scientific method” in
the abstract fails to help students grasp this important idea.

An interesting side note is that people who have participated in the
preceding demonstration have been asked whether they ever studied life
cycles in school. Almost all have said “yes”; however, they learned about
life cycles as isolated exercises (e.g., they were asked to memorize the
stages of the life cycle of a fly or mosquito) and never connected this
information to larger questions, such as the survival of a species. As a
consequence, the idea of life cycles had never occurred to them in the
context of attempting to solve the above problem.

In Chapter 1, Bruner’s ideas32  about curriculum organization are dis-
cussed; those ideas are highly relevant in this context. For example, he
cautions against teaching specific topics or skills without clarifying their
context in the broader fundamental structure of the field; rather, students
need to attain an understanding of fundamental principles and ideas. Those
presented with the frog problem may have learned about life cycles, but
their teachers and texts did not explain the importance of this information
in the broader structure of the field of knowledge. To paraphrase White-
head,33 knowledge that was potentially important for exploring the frog
problem remained “inert.”
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BOX 9-4 The Proof Was in the Peas

Gregor Mendel’s major contribution to the field of genetics rested on his choice of
peas. Many famous men at the time were conducting experiments in plant breed-
ing, but no general principles had emerged from these experiments. Typically they
involved plant organisms that differed on a variety of dimensions, and the off-
spring were found to be intermediate or, in rare cases, more like one parent plant
than the other.

Mendel chose peas for certain critical features: they have both male and fe-
male structures and are generally self-fertilizing, but their structure makes it pos-
sible to prevent self-fertilization (by removing the anthers before they mature).
Numerous varieties of peas were available that differed on certain discrete dimen-
sions; Mendel chose varieties with seeds that were green or yellow, smooth or
wrinkled, etc. When the peas were cross-fertilized, they consistently showed one
of the two characteristics. When plants with smooth and wrinkled seeds were
crossed, they consistently had offspring with smooth seeds. This result suggested
that one characteristic is, in Mendel’s term, dominant. But when these offspring
were self-fertilized and produced their own offspring, characteristics of each of
the original parent plants appeared in members of the new generation. The stun-
ning conclusion—that offspring carry genetic information that is recessive but can
nonetheless be passed along to future generations—represented a major advance.

To appreciate Mendel’s contribution is not just to know the terms he used and
the experimental procedures he followed, or even the outcome of his work. It is to
understand as well the important role played by his experimental design, as well
as the reasoning that led him to design a productive experiment.

being metacognitive about science is different from simply asking whether
we comprehend what we read or hear; it requires taking up the particular
critical lens through which scientists view the world.

Magnusson and Palincsar provide excellent examples of how
metacognitive habits of mind for science require different kinds of questions
than people typically ask about everyday phenomena. For example, they
note that for young children and for many adults, the assumption that things
are as they appear seems self-evident. But science is about questioning the
obvious. When we do this, unexpected discoveries often come to light. For
example, a scientific mindset suggests that the observation that shiny things
reflect light needs to be explained, and this requires explaining why dull
objects do not reflect light. As these issues are investigated, it becomes clear
that the initial assumption was wrong and that dull objects do indeed reflect
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light—but at a level that is not always obvious in our everyday experiences.
As Magnusson and Palincsar note:

Engaging children in science, then, means engaging them in
a whole new approach to questioning. Indeed, it means
asking them to question. . . . It means questioning the
typical assurance we feel from evidence that confirms our
prior beliefs, and asking in what ways the evidence is
incomplete and may be countered by additional evidence.

The authors of Chapters 11 and 12 also place a great deal of emphasis
on helping students become aware of ways in which scientific inquiry goes
beyond peoples’ everyday ways of interacting with their environment. The
authors attempt to help students compare their personal “ways of knowing”
with those developed through centuries of scientific inquiry. Helping stu-
dents understand the tendency of us all to attempt to confirm rather than
rigorously test (and possibly refute) our current assumptions is one example
of a metacognitive approach to science instruction. The approach is deep-
ened when we help students learn why and how to create models of phe-
nomena (especially the invisible aspects of phenomena) that can then be
put to an empirical test.

The following chapters emphasize another aspect of metacognition as
well: helping students learn about themselves as learners. The authors de-
scribe classroom activities and discussion that encourage students to reflect
on the degree to which they contribute to or detract from group processes,
and on the degree to which efforts to communicate findings (e.g., in writing)
uncover “holes” in one’s thinking that otherwise might remain invisible.

The authors’ decisions about the topics they discuss (light, force and
gravity, genetics and evolution) were guided in part by the opportunities
these topics provide to help students think differently not only about the
subject matter, but also about how they “know,” and how their everyday
approaches to knowing compare with those scientists have developed over
the last few centuries.

THE HOW PEOPLE LEARN FRAMEWORK
As noted in Chapter 1, authors of the chapters in this volume were not

asked to tie their discussion explicitly to the framework of How People Learn
that suggests classrooms should be learner-centered, knowledge-centered,
assessment-centered, and community-centered. Nevertheless, it can be use-
ful to see how this framework applies to their work.
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BOX 9-5 Reflective Assessment in ThinkerTools

ThinkerTools is an inquiry-based curriculum that allows students to ex-
plore the physics of motion. The curriculum is designed to engage stu-
dents’ conceptions, to provide a carefully structured and highly supported
computer environment for testing those conceptions, and to steep stu-
dents in the processes of scientific inquiry. The curriculum has demon-
strated impressive gains in students’ conceptual understanding and the
ability to transfer knowledge to novel problems.

White and Frederiksen34  designed and tested a “reflective assess-
ment” component that provided students with a framework for evaluat-
ing the quality of an inquiry—their own and that of others. The assess-
ment categories included understanding the main ideas, understanding
the inquiry process, being inventive, being systematic, reasoning care-
fully, applying the tools of research, using teamwork, and communicating
well. Students who were engaged in reflective assessment were com-
pared with matched control students who were taught with ThinkerTools,
but were asked to comment on what they did and did not like about the
curriculum without a guiding framework. Each teacher’s classes were
evenly divided between the two treatments. There were no significant
differences in students’ initial average standardized test scores (the Com-
prehensive Test of Basic Skills was used as a measure of prior achieve-
ment) between the classes assigned (randomly) to the different treat-
ments.

Students in the reflective assessment classes showed higher gains
both in understanding the process of scientific inquiry and in understand-
ing the physics content. For example, one of the outcome measures was
a written inquiry assessment that was given both before and after the
ThinkerTools inquiry curriculum was administered. This was a written test
in which students were asked to explain how they would investigate a
specific research question: “What is the relationship between the weight
of an object and the effect that sliding friction has on its motion?”35  Stu-
dents were instructed to propose competing hypotheses, design an ex-
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periment (on paper) to test the hypotheses, and pretend to carry out the
experiment, making up data. They were then asked to use the data they
generated to reason and draw conclusions about their initial hypotheses.

Presented below are the gain scores on this challenging assessment
for both low- and high-achieving students and for students in the reflec-
tive assessment and control classes. Note first that students in the re-
flective assessment classes gained more on this inquiry assessment. Note
also that this was particularly true for the low-achieving students. This is
evidence that the metacognitive reflective assessment process is benefi-
cial, particularly for academically disadvantaged students.
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Learner-Centered

All three of the following chapters place a great deal of emphasis on the
ideas and understandings that students bring to the classroom. Each begins
by engaging students in activities or discussions that draw out what they
know or how they know, rather than beginning with new content. Students
are viewed as active processors of information who have acquired concepts,
skills, and attitudes that affect their thinking about the content being taught,
as well as about what it means to do science. Like Lionni’s fish (see Chapter
1), students bring preconceptions to class that can shape (or misshape) learn-
ing if not addressed. These chapters engage students’ ideas so that they can
be reexamined, reshaped, and built upon.

Knowledge-Centered

Issues of what should be taught play a fundamental role in each of the
chapters that follow. While engaging in inquiry involves a great deal of
activity that is under students’ control, the authors are quite clear about the
knowledge that students need to acquire to understand the topic, and they
guide students’ inquiry to ensure that the necessary concepts and informa-
tion (including the terminology) are learned. The chapters emphasize both
what scientists know and how they know. But the authors’ approaches to
instruction make these more than lists of information to be learned and steps
to be followed.

Of particular importance, opportunities for inquiry are not simply tacked
on to the content of a course; rather, they are the method for learning the
content. This sets the stage for a number of important changes in science
instruction. Simply having students follow “the scientific method” probably
introduces more misconceptions about science than it dispels. First, differ-
ent areas of science use different methods. Second, as discussed above,
lockstep approaches to conducting science experiments exclude the aspects
of science that are probably the most gratifying and motivating to scien-
tists—generating good questions and ways to explore them; learning by
being surprised (at disconfirmations); seeing how the collective intelligence
of the group can supersede the insights of people working solely as indi-
viduals; learning to “work smart” by adopting, adapting, and sometimes
inventing tools and models; and experiencing the excitement of actually
discovering—and sharing with friends—something that provides a new way
of looking at the world.
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Assessment-Centered

The word “assessment” rarely appears in the three chapters that follow,
but in fact the chapters are rich in assessment opportunities. Students are
helped to assess the quality of their hypotheses and models, the adequacy of
their methods and conclusions, and the effectiveness of their efforts as learners
and collaborators. These assessments are extremely important for students,
but also help teachers see the degree to which students are making progress
toward the course goals and use this information in deciding what to do
next. It is noteworthy that these are formative assessments, complete with
opportunities for students (and teachers) to use feedback to revise their
thinking; they are not merely summative assessments that give students a
grade on one task (e.g., a presentation about an experiment) and then go on
to the next task.

Community-Centered

The dialogue and discussion in each of the following chapters indicate
that the teachers have developed a culture of respect, questioning, and risk
taking. Disconfirmation is seen as an exciting discovery, not a failure. A
diverse array of thoughts about issues and phenomena is treated as a re-
source for stimulating conversations and new discoveries—not as a failure
to converge immediately on “the right answer.” Discussions in class help
support the idea of a “learning community” as involving people who can
argue with grace, rather than people who all agree with one another (though,
as Magnusson and Palincsar suggest, this can take some time and effort to
develop).

CONCLUSION
While each of the three chapters that follow has much to offer in dem-

onstrating instructional approaches designed to incorporate important les-
sons from research on learning, we remind the reader that these chapters
are intended to be illustrative. As noted earlier, there are many ways to build
a bridge that are consistent with the principles of physics, and this is also
true of relationships between course design and general principles of learn-
ing. It is the intention of the following chapters to provide approaches and
ideas for instruction that other teachers may find useful in their own teach-
ing. Indeed, the approaches are ones that require of teachers a great deal of
responsiveness to their students’ ideas and thinking. Such approaches to
teaching will most likely succeed if teachers understand the principles that
drive instruction and incorporate them into their own thinking and teaching,
rather than making an effort to replicate what is described in the chapters
that follow.
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10
Teaching to Promote the Development of

Scientific Knowledge and
Reasoning About Light at the

Elementary School Level
Shirley J. Magnusson and Annemarie Sullivan Palincsar

Children at play outside or with unfamiliar materials look as though they
might be answering such questions as: What does this do? How does this
work? What does this feel like? What can I do with it? Why did that happen?
This natural curiosity and exploration of the world around them have led
some people to refer to children as “natural” scientists. Certainly these are
the very types of questions that scientists pursue. Yet children are not scien-
tists. Curiosity about how the world works makes engaging children in sci-
ence relatively easy, and their proclivity to observe and reason (see Chapter
1, Box 1-1) is a powerful tool that children bring to the science classroom.
But there is a great deal of difference between the casual observation and
reasoning children engage in and the more disciplined efforts of scientists.

How do we help students develop scientific ideas and ways of know-
ing?1  Introducing children to the culture of science—its types of reasoning,
tools of observation and measurement, and standards of evidence, as well as
the values and beliefs underlying the production of scientific knowledge—is
a major instructional challenge. Yet our work and that of others suggest that
children are able to take on these learning challenges successfully even in
the earliest elementary grades.2
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THE STUDY OF LIGHT
Unlike mathematics, in which topics such as whole-number arithmetic

are foundational for the study of rational number, and both are foundational
for the study of functions, there is currently little agreement on the selection
and sequencing of specific topics in science, particularly at the elementary
level.3  What clearly is foundational for later science study, however, is learn-
ing what it means to engage in scientific inquiry—learning the difference
between casual and scientific investigations. That learning can be accom-
plished in the context of many different specific topics.

In this chapter, we choose light as our topic of focus because it affords
several benefits. The first is practical: the topic involves relatively simple
concepts that children can understand from investigating with relatively simple
materials. For example, our bodies and the sun make shadows that can be
studied, and similar studies can occur with common flashlights and class-
room materials. Pencil and paper, and perhaps some means of measuring
distance, are all that is needed for data collection. Children can also study
light using simple light boxes (Elementary Science Study’s Optics unit4) in
which light bulbs are placed in cardboard boxes containing openings cov-
ered with construction paper masks that control the amount of light emanat-
ing from the box. Thin slits in the masks make the thin beams of light
necessary for studies of reflection and refraction. Multiple wider openings
covered with different colored cellophane filters enable investigations mix-
ing colors of light. And again, pencil and paper are all that are needed for
data collection showing the paths of light.

In addition, developing scientific knowledge of light challenges us to
conceptualize aspects of the world that we do not directly experience—a
critical element of much scientific study. For example, light travels, yet we
do not see it do so; we infer its travel when we turn on a flashlight in the
dark and see a lighted spot across the room.

Developing scientific knowledge often requires conceptual change5  in
which we come to view the physical world in new ways.6  Students must
learn that things are not always what they seem—itself a major conceptual
leap. The study of light gives children an accessible opportunity to see the
world differently and to challenge their existing conceptions. We see the
world around us because light reflects from objects to our eyes, and yet we
do not sense that what we see is the result of reflected light.

Some children, moreover, view shadows as objects instead of under-
standing that shadows are created when light is blocked. Conceptual devel-
opment is required if they are to understand the relationship among a light
source, an object, and the shadow cast by that object. Working with flash-
lights can provide children an opportunity to challenge directly everyday
conceptions about shadows, providing them with a powerful early experi-
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ence of scientific ways of knowing. Because casual observation of the be-
havior of light can be misleading, but a relatively accessible investigation of
light can be illuminating, the study of light demonstrates the contrast
between casual observation and experimentation. For all these reasons,
then, the study of light supports children’s understanding that relationships
in the physical world are not self-evident and that constructing scientific
knowledge from observation of the world is different from their everyday
reasoning.

Three major instructional challenges parallel the principles of How People
Learn as they apply to the study of light: (1) providing students with oppor-
tunities to develop deep conceptual understanding of targeted aspects of
light, and of standards and norms in science for investigating and drawing
conclusions (both about light and more generally); (2) supporting students
in building or bridging from prior knowledge and experience to scientific
concepts; and (3) encouraging children to engage in the kind of metacognitive
questioning of their own thinking that is requisite to scientific practice.

Conceptual Understanding

How People Learn suggests that learning for understanding requires the
organization of knowledge around core concepts. Thus while light can be
studied with tools that are easy to use and opportunities to observe the
behavior of light abound, if the classroom activity described in this chapter
were simply a set of experiences and observations, it would leave students
with little deep knowledge. Experiencing many individual activities (e.g.,
seeing that light reflects from wood as well as mirrors) does not ensure that
students understand the overarching concepts about light outlined below
that allow them to predict how light will behave in a wide variety of circum-
stances. As a result, a major focus in this chapter is on the role of the teacher
in guiding students’ observations, reasoning, and understanding so that core
concepts are grasped.

What conceptual understandings do we consider to be core? As sug-
gested above, grasping the differences between everyday observations and
reasoning and those of science is not only core in our approach to teaching
about light, but also paramount in providing a foundation for further science
study. Salient concepts include the following:

• Standards of the scientific community for understanding and commu-
nicating ideas and explanations about how the world works are different
from everyday standards. Science requires careful observations that are re-
corded accurately and precisely, and organized so that patterns can be ob-
served in the data.

• Patterns in observations are stated as knowledge claims.
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• Claims are judged on the quality of the evidence supporting or
disconfirming them.

• Hypotheses take on the status of claims only after they have been
tested.

• Claims are subject to challenge and not considered new scientific
knowledge until the scientific community accepts them.

These understandings are foundational for all future study of science.
There are also core concepts regarding the topic of light that we want

students to master. These will vary somewhat, however, according to the
grade level and the amount of time that will be devoted to the topic. These
concepts include the following:

• All objects (experienced in our everyday lives) reflect and absorb
light, and some objects also transmit light.

– Dark or black objects mainly absorb light; light or white objects
mainly reflect light.

– There is an inverse relationship between light reflected from and
absorbed by an object: more reflected light means less absorbed light.

• Light reflects from objects in a particular way: the angle of incoming
light equals the angle of reflected light.

• What we see is light reflected from objects.
– There must be a source of light for us to see an object.
– Sources of illumination can produce light (e.g., the sun) or reflect

light (e.g., the moon).
• When an object blocks a source of light, a shadow is formed. Shad-

ows are dark because there is no light reaching them to be reflected to our
eyes. The distance of an object from a source of light it blocks determines
the size of the object’s shadow. The shape of an object’s shadow depends
on the angle of the object to the light, so the shadow of an object may have
more than one shape.

• The color of an object is the color of light reflected from the object.
– The colors of light come from white light, which can be separated

into many colors.
– The color of an object depends on the extent to which particular

colors of light in white light are reflected and absorbed.

Other concepts—such as the nature of light as both a wave and a par-
ticle—are beyond what elementary students need to understand. But teach-
ers need to know these core concepts to deal effectively with questions that
may arise, as we discuss later in this chapter.
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Prior Knowledge

Students bring many prior conceptions about light to the classroom.
Some of these are influenced relatively easily. For example, some students
believe a shadow is an object, but this conception is not deeply held, and
simple experiments with light can provide convincing evidence to the con-
trary. Other scientifically inaccurate conceptions are not so easily changed
by simple experiments.

A very common belief is that light reflects only from shiny objects, such
as a mirror or shiny metals. This is hardly surprising; reflections from shiny
objects are strikingly obvious, while observing reflection from objects with
no apparent shine requires a tool (e.g., a simple device such as a piece of
paper strategically placed to show reflected light, or a more sophisticated
device such as an electronic meter that measures light energy). In fact, the
nature of light has puzzled scientists for centuries.7  Part of the challenge to
our understanding is that the behaviors and effects of light are not easily
determined by our senses. Light travels too fast for us to see it traveling, and
our observation of light that has traveled great distances, such as light from
the sun and other stars, provides no direct evidence of the time it has taken
to reach us. Scientists have determined that light exerts pressure, but this is
not something we can feel. We see because light is reflected to our eyes, but
we have no way of experiencing that directly. We commonly think of color
as an intrinsic characteristic of an object because we do not experience what
actually occurs: that the color we see is the color of light reflected from the
object. Furthermore, grasping this notion requires understanding that white
light is made up of colors of light that are differentially absorbed and re-
flected by objects. If none are reflected, we see black, and if all are reflected,
we see white, and this is counter to our experience with colored pigments
that make a dark color when mixed together. Finally, perhaps the strongest
testimony to the complex nature of light is the fact that scientists use two
very different models to characterize light: a particle and a wave.

Because daily experience reinforces ideas that may be quite different
from scientific understanding, fostering conceptual change requires supporting
students in paying close attention to how they reason from what they ob-
serve. For this reason, the approach to teaching we suggest in this chapter
provides students with a great many opportunities to make and test knowl-
edge claims, and to examine the adequacy of their own and others’ reason-
ing in doing so. Once again, however, the role of the teacher is critical. As
we will see, the prior conceptions with which students work may lead them
to simply not notice, quickly dismiss, or not believe what they do not expect
to see.
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Metacognition

Young children, and indeed many adults, assume that things are as they
appear, and no further questioning is required. That light reflects off objects
only if they are shiny may appear to be true and in no need of further
questioning. Science, however, is about questioning—even when something
seems obvious—because explanation is at the heart of scientific activity.
Thus the search for an explanation for why shiny objects reflect light must
include an answer to the question of why nonshiny objects do not. Such a
search, of course, would lead to evidence refuting the notion that only shiny
objects reflect light. Engaging children in science, then, means engaging
them in a whole new approach to questioning. Indeed, it means asking
them to question in ways most of us do not in daily life. It means question-
ing the typical assurance we feel from evidence that confirms our prior
beliefs, and asking in what ways the evidence is incomplete and may be
countered by additional evidence. To develop thinking in this way is a major
instructional challenge for science teaching.

THE STUDY OF LIGHT THROUGH INQUIRY
With the above principles in mind, we turn now to the learning of

science through investigative activity in the classroom, or inquiry-based in-
struction.8 Investigations in which students directly observe phenomena, we
believe, serve several critical functions. First, when students experiment with
light and observe phenomena they do not expect, these discrepant experi-
ences can directly challenge their inaccurate or partially developed concep-
tions. Students will need many opportunities to observe and discuss the
behavior of light that behaves in unexpected ways if they are to develop
scientific conceptions of light. Inquiry that is designed to occur over weeks
and allows students to work with many different materials can provide that
experience. The opportunity for repeated cycles of investigation allows stu-
dents to ask the same questions in new contexts and new questions in
increasingly understood contexts as they work to bring their understanding
of the world in line with what scientists think. Equally important, participa-
tion in well-designed guided-inquiry instruction provides students with a
first-hand experience of the norms of conducting scientific investigation.

But inquiry is a time- and resource-intensive activity, and student inves-
tigations do not always lead to observations and experiences that support
the targeted knowledge. Therefore, we combine first-hand investigations
with second-hand investigations in which students work with the notebook
of a fictitious scientist to see where her inquiry, supported by more sophis-
ticated tools, led. This second-hand inquiry provides a common investiga-
tive experience that allows the teacher to direct attention to steps in the
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reasoning process pursued by the scientist that led to the development of
core concepts. Moreover, it allows students to see that while scientists en-
gage in a similar type of inquiry, more sophisticated tools, more control over
conditions, and larger sample sizes are critical to drawing conclusions that
can be generalized with some confidence.

A Heuristic for Teaching and Learning Science Through
Guided Inquiry

To aid our discussion of the unfolding of instruction, we present a heu-
ristic—a thinking tool—to support planning, enacting, and evaluating guided-
inquiry instruction with elementary school teachers.9  This heuristic (see Fig-
ure 10-110), which shares many features with other researched-based
approaches to teaching elementary science through investigation,11  repre-
sents instruction in terms of cycles with phases. The words in all capital
letters in Figure 10-1 indicate the phases, and the lines with arrows show the
progression from one phase to the next. Reporting is a key phase in this
conception of instruction; it is the occasion when groups of students report
the results of their investigations to their classmates. Students are expected
to report on knowledge claims they feel confident in making and providing
evidence for those claims from the data they collected during investigation.
This expectation lends accountability to students’ investigative activity that is
often absent when they are simply expected to observe phenomena. To
make a claim, students will need precise and accurate data, and to have a
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claim that is meaningful to the class, they will need to understand the rela-
tionship between the question that prompted investigation and the way in
which their investigation has enabled them to come up with an answer.

Multiple lines leading from one phase to another indicate the two basic
emphases of investigative activity in science: generating knowledge that
describes how the world works (outer loop), and generating and testing
theories to explain those relationships (inner loop). The reporting phase
always marks the end of a cycle of inquiry, at which point a decision is made
about whether to engage in another cycle with the same question and inves-
tigative context, or to re-engage with a novel investigative context or a new
question. Cycles focused on developing knowledge claims about empirical
relationships generally precede cycles in the same topic area focused on
developing explanations for those relationships. Thinking and discussing
explanations may occur in other cycles, but the focus of the cycle repre-
sented by the inner loop is on testing explanations.

Each phase in the heuristic presents different learning opportunities and
teaching challenges. Each also provides opportunities to focus on ideas de-
scribing the physical world (concepts and theories or content) as well as the
means by which we systematically explore the nature of the physical world
(methods and reasoning or process).

Each phase requires different types of thinking and activity on the part
of the students and the teacher; hence, each has a unique role to play in
supporting the development of scientific knowledge and ways of knowing.
The following illustrations of teacher and student activity in each phase of
instruction are drawn from our work in elementary school classrooms.12

The Engage Phase

Description. Each unit of study begins with an engagement phase, which
orients thinking and learning in a particular direction. In the elementary
classroom, a version of the classic KWL (i.e., what do I Know, what do I
Want to learn, what have I Learned) can be a fine way to initiate engage-
ment. In contrast to the typical use of KWL in the language arts, however, to
maximize the value of having students identify what they know, teachers
should invite students to identify how they have come to know the topic
area. Doing so can develop students’ awareness that “knowing” can mean
different things. Does their knowledge arise from something they actually
observed? If so, where and when did that occur, and under what circum-
stances? Or did others observe it and report it to them? If so, how confident
were they in what was reported and why? If a student reports knowledge
from something written in a book, what other information was provided?
Were any data provided to substantiate the claim? How extensive was the
information provided regarding what the student reports knowing? This dis-
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cussion can provide the grist for later comparisons of ways of knowing in
everyday life versus in science, history, or the language arts. It also affords
teachers an opportunity to draw out and learn about students’ prior knowl-
edge, metacognitive awareness, and reasoning abilities. For example, in a
class beginning to investigate how light interacts with matter, one student
stated that he already knew the answer because he knew that objects were
opaque, transparent, or translucent. This statement indicated to the teacher
that the student might assume light interacts with an object in only one way,
which could limit what he observed. Knowing of this possibility, the teacher
would want to monitor for it, and possibly raise questions about the thor-
oughness of students’ observations.

The scientific community defines for itself what knowing in particular
ways means. For example, in each discipline (e.g., physics, chemistry, biol-
ogy), the community defines what are acceptable methods for data collec-
tion and what constitutes precise and accurate observation. The community
also dictates what constitutes a valuable contribution to the knowledge base.
The relative value of a contribution is a function of the extent to which it
extends, refines, or challenges particular theories of how the world works.
In our everyday world, we do not have a community determining the valid-
ity of our thinking or experiences. Thus, the initial conversation when be-
ginning a new area of study provides an important opportunity for the teacher
to ascertain children’s awareness of the roots of their knowledge, as well as
the expectations of the scientific community. For example, when students
describe knowing something about the physical world but indicate that their
knowledge did not arise from observation or direct experience, the teacher
might ask them to think about what they have observed that might be the
kind of evidence scientists would expect to have. When students do provide
evidence, the teacher might ask them questions about that evidence such as
those above, reflecting the norm that systematic study under controlled con-
ditions is a hallmark of the practice of science, and that evidence not ob-
tained under those conditions would lead scientific thinkers to be skeptical
about the knowledge claim.

The next step in engagement is to begin to focus the conversation about
the topic of study in ways that are likely to support the learning goals. For
example, showing students the kinds of materials and equipment available
for investigating can lead to a productive conversation about phenomena
they can explore. Focusing on ideas that were generated during the KWL
activity, the children can be encouraged to suggest ways they might investi-
gate to determine whether those ideas are scientifically accurate (meaning
that the claims can be backed by evidence from investigation). Students can
also be encouraged to identify what cannot easily be studied within the
classroom (because of the nature of the phenomenon or a lack of resources
or time) and might be better studied in a second-hand way (i.e., through
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reading or hearing about what others have studied and concluded from first-
hand investigation). For example, we observed a group of third graders
studying light who had numerous questions about black holes, the speed of
light, and light sources on different planets, all of which they decided were
best pursued through second-hand investigation.

At the end of engagement, the students should have a sense of a general
question they are trying to answer (e.g., How does light interact with mat-
ter?), and should have identified a particular question or questions to be the
focus of the first cycle of investigation. To this end, a teacher might (1) focus
the class on a particular phenomenon to study and have them suggest spe-
cific questions, (2) draw upon conflicting ideas that were identified in the
KWL activity and have the class frame a question for study that can inform
the conflict, or (3) draw on a question that was identified during the discus-
sion that is a profitable beginning for investigation.

Illustration. What does this kind of beginning look like in a classroom? In
a kindergarten classroom,13  after a brief opportunity for the children to state
what they thought they knew about light and how it behaved, the teacher,
Ms. Kingsley, arranged for pairs of students to take turns using flashlights in
an area of the classroom that had been darkened. This activity provided
children an opportunity to become familiar with investigative materials and
phenomena that Ms. Kingsley knew would be the focus of later investiga-
tion. The children responded to this activity in a variety of ways, from ini-
tially becoming focused on finding spiders to dwelling later on the effects
they could create with flashlights. For example, one student commented on
the colors she saw as she shone the flashlight on the wall in the darkened
area: “There’s color. When it shines on a color, then it’s the color, green, or
white, or red, or black. And then you put the light on the ceiling, it’s gone.”
In the following interaction, the children “discover” reflection:

[Anisha walks forward under the loft, holding
the flashlight with her left hand at an angle to
the mirror that she holds flat in front of her.]

Anisha Oh Deanna, look, I can bounce the light.

[Deanna holds the mirror so light is bouncing
directly behind her.]

Deanna [excitedly] If you look back, maybe you
can see the light.

A third student focused on what he saw while holding objects in the beam
of light. The following interchange occurred when the students explored
with large cardboard cutouts of letters of the alphabet.
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Jeremy [working with a letter] Ooo, this makes a
shadow. A different shadow [than the one he
just saw]. [He picks up the letter G and hands it
to his partner.] See if the G makes a shadow.

Hazel It does make a shadow. See, look at this.

When the children described their observations to the class, Ms. Kingsley
was able to use those observations to elicit the children’s current ideas about
light and shadows and how they might investigate those ideas.

In a fourth-grade classroom,14 the teacher, Ms. Lacey, introduced her
students to the study of light by asking them what they wondered about
light. The children identified over 100 “wonderings,” including questions
about how we see, why we see rainbows of color from some glass objects or
jewelry, what makes light from the plastic sticks you bend to make them
“glow” in the dark, what are black holes, and how fast is the speed of light.
The next day, students were given a written assessment about light, pre-
sented as an opportunity for them to identify their current thinking about the
nature and behavior of light. After reviewing students’ responses, Ms. Lacey
wrote statements on the board (see Table 10-1) indicating the variety of
ideas the class held about light. The variation in views of light exhibited by
the students provided a reason to investigate to determine the accuracy of
the ideas and the relationships among them.

TABLE 10-1 Fourth Graders’ Initial Ideas About Light
Light travels. Light can be blocked by materials.
Light travels in a curved path. Light can shine through materials.
Light travels in a straight line. Light can go into materials.
Light travels in all directions. Light can bounce off of materials.

Later in the unit on light, Ms. Lacey turned to other wonderings the
students had about color and light. In the following excerpt, she ascertains
whether students’ questions came from what they had been told, read, or
observed, and she prompted one student to hypothesize about color from
what had previously been learned about the behavior of light.

Ms. Lacey I know you guys had a few questions about
color, so I’m wondering what you know or
would like to know about color? What is it you
think you want to learn? Levon?

Levon When I said that my shirt’s a light blue, you
said how do we know it? And you said we
might be able to tell.
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Ms. Lacey Mm-hmm. You want to know how you know
it’s blue?

Levon And you said we might be able to tell how.

Ms. Lacey Well, I think you want to know why when you
see a blue shirt, you—it’s blue. Okay. We might
be able to figure that out. Tom? What is it you
want to know?

Tommy How you change color with light. I know it’s
real, cause I seen it.

Ms. Lacey What did you see?

Tommy Light makes your shirt be a different color. I
want to know how to do that.

Ms. Lacey Hmm. Jared?

Jared I’m wondering how light can make color.

Ms. Lacey How light can make color? You think it does?

Jared Yeah.

Ms. Lacey Oh. Marcus?

Marcus I think light is color.

Ms. Lacey You think light is color. Hmm. So, is that a
hypothesis or is that something you really
think?

Marcus Hypothesis. It’s something I heard.

Ms. Lacey Okay. So we’ll see if that’s right or not.

Marcus How does light blend, blend.

Ms. Lacey How does it . . .

Marcus Different colors of light blend. Like, in the first-
hand, the white light blends with . . .

Ms. Lacey Do you mean bend? Okay.

Michael I don’t really have a question about color, but I
have a question about light. Why do they call
light, light?

Ms. Lacey Ah! Good question.

Marcus Cause it’s, cause it’s light, like a light color. You
can’t even see it.

Michael And why did they call it that? Why did they call
it?

Ms. Lacey What do you think they should call it?

Michael Something ‘cause it’s so light, you can’t see it.

Chris How does color make white?

Ms. Lacey How does color make white? It does?

Chris Mm-hmm.
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Ms. Lacey You think so?

Chris Yeah. I saw it in a book.

Ms. Lacey So, that is your hypothesis.

Ronny How does color interact with light?

Jared How does light, how does light form color?

Ms. Lacey How does light make color? You think it does?

Jared How does light form color and make color?

Ms. Lacey Do you think there’s a difference between the
word form and make? Or do you think it’s the
same thing?

Jared It’s kinda the same. Forms like light, or some-
thing.

Ms. Lacey Do you think light forms color?

Jason Yeah.

Ms. Lacey What makes you think that it might do that?

Jason Cause light does.

Ms. Lacey You just think that? That’s a hypothesis you’re
thinking. Okay.

Andrew It’s not a, I don’t have a question, but it’s sort of
a thought. I read in this book that when
colored light reflects off, like, the same color,
that it’ll reflect off that.

Ms. Lacey I don’t understand what you mean.

Andrew Okay. If, if there’s red light and it reflected off
somebody’s red shirt . . .

Ms. Lacey Reflected like off like Jared’s shirt?

Andrew Red, yeah, red shirt.

Ms. Lacey Okay.

Andrew And then, to another red shirt and off.

Ms. Lacey So you think this red light can bounce only if
it’s on red stuff? Is that what you’re thinking?

Andrew Yeah. Or if it reflects on like green, red light
can’t reflect on a green object.

Ms. Lacey Red light can’t reflect on a green object? What
would happen to it if wouldn’t reflect?

Andrew It’d stay in. It’ll absorb.

Ms. Lacey You think it might absorb? Could it do anything
else?

Andrew [pause] Transmit?

Ms. Lacey You think it might transmit? Oh. Jamal? We’ve
got some good ideas here. . . .
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A common strategy for engagement not illustrated here is the use of a
discrepant event—a phenomenon whose behavior or result is unexpected.
For example, if one shines a bright, thin beam of light at an angle into a
rectangular block of clear, colorless glass with a frosted surface, one can see
that the light interacts with the block in multiple ways. Because the object is
transparent, students are not surprised to see light through it, but they may
be surprised that the light goes through at an angle (refraction), and they are
surprised that light also reflects off the block where it enters and where the
refracted light exits the block. We can then ask the question: If light behaves
in all these ways with this material, does it do the same with other materials?

While it may be easy to engage children with unfamiliar phenomena or
new aspects of familiar phenomena, it is more challenging to support them
in developing scientific understanding of the world because scientists often
“see” the world differently from what our senses tell us. So using the en-
gagement phase to gain knowledge about the conceptual resources students
bring to instruction is just the first step. As the knowledge-building process
unfolds in subsequent phases, paying attention to how students use those
ideas, promoting the use of particular ideas over others, and introducing
new ideas are key. In the next phase, the primary focus shifts from eliciting
students’ thinking about what the physical world is like to preparing them to
investigate it in scientific ways.

The Prepare-to-Investigate Phase

Description. Preparing to investigate is an opportunity for teachers to sup-
port children in learning how scientific knowledge is produced. While in-
quiry often begins with a general question, investigation must be guided by
very specific questions. Thus, an important goal of this phase of instruction
is to establish the specific question that will be the subject of the subsequent
investigation.15 The question must be specific enough to guide investigation,
amenable to investigation by children, and central to the unit of study so that
students can construct the desired knowledge of scientific concepts, proce-
dures, and ways of knowing. If the teacher presents a question, it is impor-
tant that this be done in a way that involves the children in discussion about
why the question is important and relevant to understanding the broader
topic of inquiry. This discussion provides an opportunity to signal the role of
questions in scientific investigation and prompts the metacognitive activity
that is the hallmark of any good reasoning. If students suggest a question, or
the teacher and students together generate the question, it is still important
to check the students’ understanding about how the question is relevant to
the topic of study.16

Once a question has been specified, attention can turn to determining
how the question will be investigated. This is a critical issue for scientists,
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and is no less important for children’s developing understanding. The teacher
may provide information about procedures to use, students may invent or
design procedures, or the teacher and students may work together to deter-
mine how investigation should be carried out. Increasingly, there is evi-
dence that children can think meaningfully about issues of methodology in
investigation.17  Nevertheless, it is always important for the teacher to check
students’ understandings about why particular approaches and procedures
are useful to answering the question. To this end, the teacher might ask
students to describe the advantage of using particular materials or tools over
others, or to tell why particular steps or tools are necessary. Then, during the
actual investigation, the teacher should periodically reassess students’ un-
derstanding of what they are doing to ascertain whether accurate under-
standing was sustained in the face of their actual encounter with phenom-
ena. In addition, the teacher can ask students to evaluate the effectiveness
and accuracy of their tools or procedures. These actions support students’
metacognitive awareness regarding the question–investigation relationship.

We think of investigation in classrooms as addressing how students should
interact with materials, as well as with one another (when investigation is
carried out by groups of students). A critical aspect of preparing to investi-
gate is determining with students what they will document and how during
their investigation. This may take the form of discussing the extent to which
procedures need to be documented (only to a small degree when students
are all investigating in the same way, but in detail when groups of students
investigate differently), and promoting and illustrating the use of drawings
to show investigative setups.

If the amount of data collection has been left undefined, the students
will need to consider how they will know when they have collected enough
data. The fact that students will have to make and report claims and evi-
dence to their classmates lends greater significance to this issue. Students
may find they need to collect more data to have sufficient amounts to
convince their classmates of their claim in comparison with what they might
have found convincing. Finally, it will be important to have students dis-
cuss how to document observations so they are accurate, precise, and
informative.

When students are working in groups, assigning them roles can be help-
ful in supporting them in working together effectively. There are various
types of roles that students can adopt during investigation. Possible roles to
support effective management of the students’ activity are Equipment Man-
ager, Timekeeper,18 and Recorder. These roles are not unique to scientific
inquiry, but other roles are. For example, having the required materials does
not mean that students will use them effectively; it is necessary to monitor
that the correct procedures are being carried out and with care.

In addition, a number of responsibilities attend data collection, such as
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ensuring that enough data will be collected to fulfill the norms of scientific
investigation, determining the level of precision with which observations are
to be made (e.g., whether length should be recorded to the centimeter, tenth
of a centimeter, or hundredth of a centimeter).19 These sorts of issues form
the basis for intellectual roles that students can adopt, in contrast to the
management roles discussed above.20  These roles, rather than being named
for a task, are named for the conceptual focus maintained during investiga-
tion. For example, one student in a group can assume primary responsibility
for pressing the group to evaluate how well procedures are working and
being carried out in order to answer the question. Another student can be
given primary responsibility for evaluating the extent to which the data be-
ing collected are relevant to the question. Finally, another student can be
given primary responsibility for checking whether the group has enough
data to make a claim in answer to the question.

If the practice of adopting roles is utilized, the prepare-to-investigate
phase is used to set this up. Modeling and role-playing are helpful to sup-
port students in adopting roles that are new to them. In addition, the formal
assignment of roles may change over time because while management roles
may always be needed, intellectual roles represent ways of thinking that we
want all students to adopt. Thus, the need to formalize such roles should
decrease over time as students appropriate them as a matter of course when
engaging in scientific investigation.

Finally, it is useful to give some attention to the issue of how data will
be recorded. At times it may be best to provide a table and simply have
students discuss how they will use it and why it is a useful way to organize
their data. At other times it may be best to have the class generate a list of
possible means for recording data. Sometimes it may be sufficient to indicate
that students should be sure to record their observations in their notebooks,
and have the students in their groups decide what approach is best for
recording their observations.

Illustration. In the unit on light and shadows, Ms. Kingsley posed to her
kindergarteners the question of whether an object’s shadow can be more
than one shape, following the opportunity they had to explore with flash-
lights prior to beginning any formal investigation. She knew that not all the
children had made shadows during their exploration, so she used part of the
discussion in this phase to ascertain students’ understanding of how to put
objects in the light to make shadows. She showed the class how the materi-
als would be set up, with a light source placed a couple of feet from a wall
and a piece of poster paper taped on the wall to allow them to draw the
shadows they observed.

During her fourth graders’ investigation of the interaction of light and
matter, Ms. Lacey bridged from the children’s wonderings to a question she
introduced: How does light interact with solid objects? She began the pre-
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paring-to-investigate phase by ascertaining students’ understanding of the
question. One boy asked what “interacts” means. She responded that she
was interacting with the students, and then asked them to interpret the
question without using the word “interact.” The students responded with
such questions as: “What would it do”? “How does it act”? “How does it
behave”? “How do they act together (but not like in a movie)”? Ms. Lacey
then solicited questions about other words in the investigation question, and
a boy asked, “What is a solid?” Students responded with statements such as:
“A solid is not like water.”“ It’s filled in.” “It’s hard, maybe.” “It doesn’t bend.”
At this point, Ms. Lacey picked up a bendable solid, bent it, and asked the
students whether it was a solid. Students were divided on whether it was.
Ms. Lacey proceeded to review states of matter with the students, discussing
properties and examples. She then returned to the preparation for investi-
gating light.

The materials on which the students would shine a flashlight were simple,
but there were many of them (more than 20 items), and describing each in
order to identify it would have been cumbersome (e.g., blue plastic sheet,
colorless plastic sheet, plastic sheet with gold coating on one side). So Ms.
Lacey prepared a poster with each type of material mounted on it and num-
bered. She used the poster to show children the materials with which they
would be working, and they discussed the use of the numbers to facilitate
documenting their observations.

Ms. Lacey also introduced a new tool to the students: a small rectangular
piece of white construction paper, which she called a “light catcher.” This
tool functioned as a screen to look for reflected or transmitted light. Figure
10-2 shows the setup Ms. Lacey showed the students, with the letters A and
B indicating the places where the students expected they might see light.

A
Light 

Catcher

Flashlight

B

Object

FIGURE 10-2 Investigative setup for
studying how light interacts with solid
objects.
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In addition, the class talked about categorizing objects in terms of how
light behaved. Ms. Lacey asked the students what they thought the light
might do, and they discussed categorizing the objects based on whether
light bounced off, went through, became trapped, or did something else
(the students were not sure what this might be, but they wanted to have a
category for other possibilities).21 In the course of that conversation, Ms.
Lacey introduced the terms “reflected,” “transmitted,” and “absorbed,” which
she stated were terms used by scientists to name the behaviors they had
described. There was some discussion about what it meant when an object
blocked light: Did that mean light had been absorbed, or was it simply
stopped by the material? Ms. Lacey suggested that the class leave that ques-
tion open, to be discussed again after they had investigated and had the
opportunity to observe the light.

Ms. Lacey chose to focus students’ recording of their observations by
preparing a simple table for them to complete: a column for the number/
name of the material and a column each for indicating whether light re-
flected, transmitted (went through), or was absorbed (trapped by) the mate-
rial. The use of the table seemed straightforward, so there was little discus-
sion. Ms. Lacey later noticed that most students used the table as though
their task was to determine which single column to check for each object.
She realized that the students needed guidance to check for each object
whether light was reflected, transmitted, or absorbed. The next time Ms. Lacey
taught this topic, she made two changes in this phase. First, she was careful
to raise the question of whether light could behave in more than one way
with a material. Students were divided on whether they thought this was
possible, which gave them a reason to investigate and supported them in
realizing the need to be thorough in observing light with each object. Sec-
ond, she asked students how they might provide evidence that light did not
interact in particular ways with an object. This discussion led students to
realize that they would have information to record in each column of the
table, and that what does not happen can be as informative as what does
happen.

The Investigate Phase

Description. In this phase, students interact with the physical world, docu-
ment their observations, and think about what these observations mean
about the physical world. The teacher’s role is to monitor students’ use of
materials and interactions with others (e.g., in small groups), as well as
attend to the conceptual ideas with which students are working and
the ways in which their thinking is similar and different from that of their
classmates.



TEACHING ABOUT SCIENCE AND LIGHT IN ELEMENTARY GRADES 439

Investigating involves the interaction of content and process. It may
appear to students to be more about process because what we observe is a
function of when, how, and with what tools we choose to observe. At the
same time, what we observe is also a function of what we expect to observe,
and how we interpret our observations is clearly influenced by what we
already know and believe about the physical world. For example, we have
experienced children describing only one type of interaction when shining
light on objects because they expected that light could interact in only one
way. Thus they described light as only “going through” a piece of clear,
colorless plastic wrap even though we could see bright spots of light on the
front of the wrap indicating reflected light. Furthermore, students described
light as only “being blocked” from a piece of cardboard even though a disc
of light the size of the flashlight beam could be seen on the back of the piece
of cardboard, indicating that light was going through it.22

The teacher determines whether and when to prompt students’ aware-
ness of the ways in which their prior knowledge may be influencing their
observations. With respect to students’ interactions with materials, it is im-
portant to monitor whether students are using them appropriately. Students
invariably use materials in unexpected ways; hence, the teacher needs to
observe student activity closely. When students use materials incorrectly, the
teacher needs to determine whether to provide corrective feedback. Since it
is important for the development of metacognition that students be in the
“driver’s seat” and not simply follow the teacher’s directions, determining
whether, when, and how to provide feedback is critical. If the teacher judges
that the students’ activity is so off the mark that the targeted learning goals
will be sacrificed, it is critical to provide prompt corrective feedback. An
example in the study of light would be if students measuring angles of the
path of light coming into and reflecting off of a mirror were using the pro-
tractor incorrectly.

Other cases, however, provide opportunities for students to become
aware of gaps in their thinking. An example of this occurred when the
teacher in the kindergarten class studying light and shadows noticed that
some students were tracing the object directly on their recording paper
rather than tracing the object’s shadow. When the teacher saw this happen-
ing, she joined the group as they were working and began to ask them
about their data. In the course of the conversation, she asked them to show
her how they had made the shadows, which led them to indicate that some
were tracings of the objects themselves, not the shadows. She then asked
them, “If our question is about shadows, which drawings show shadows?”
The students were able to point to their drawings that were shadows. She
then asked, “How could you mark your drawings so that you can tell which
ones are shadows, so that when we look for patterns, you’ll know which
drawings to look at?” They devised a scheme—to draw dots around the
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drawings that were shadows—and the teacher moved on to another group.
Later, when the former group reported, the rest of the class learned about
their strategy and how they had dealt with the “mixed” nature of their
observations.

Another important category of feedback is when the teacher brings out
the norms and conventions of scientific investigation (e.g., holding condi-
tions the same when trials are conducted, measuring from the same refer-
ence point, and changing only one variable at a time). Attention to such
issues can be prompted by asking students about the decisions they are
making about how to investigate. For example, in the fourth-grade investi-
gation of the interaction of light and matter, one group’s response to Ms.
Lacey’s question about what they had found out revealed a lack of attention
to the transmission of light. Ms. Lacey handled this in the following way:

Ms. Lacey When we were preparing to investigate, we
said that light might also be transmitted, but I
didn’t hear you say anything about that. Did
you check for that?

Student No, but we already know light doesn’t go
through these materials; they block it.

Ms. Lacey But remember that scientists believe it is
important to test out such ideas, and as
scientific thinkers, your classmates will be
encouraged to look for such evidence. How
will you convince them that these materials
don’t transmit light?

Here Ms. Lacey gave students an important message about the need to rule
out possibilities instead of relying on assumptions.

With small-group investigation, in addition to general monitoring to sup-
port student collaboration, the teacher needs to be attentive to whether
differences in students’ ideas create difficulties. In the excerpt below, two
kindergarten children in Ms. Kingsley’s class are investigating reflection from
a mirror. Their initial conflict is due to Brian’s interest in placing the mirror
so that its back faces the light source. Amanda objects because her explora-
tion during the engage phase revealed that reflection is best from the front
of the mirror. She is very interested in seeing the reflection because the class
is examining a claim she made from her exploration activity, which was that
you can use a mirror to make light “go wherever you want it to.”

Amanda [tracing line to mirror] This goes to here. The
light has to hit the mirror. Then . . .
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Brian I want it to go that way. [referring to placement
of the mirror with its back to the light source]

Amanda No, the mirror has to face the light source.

Amanda [turns mirror to face the light source] Lookey!
Light, see.

Brian [turns mirror back around] Lookey, no light,
see.

Amanda But that’s because it’s not facing that way.
[turns mirror to face the light]

Brian You said you could move it wherever you
wanted it to go. So your plan has failed. . . .

Amanda The light has to do the—okay. This is the light
source, right? [points to source] This light has
to hit the mirror . . . And then, look, look, see
. . . Now you think my plan works, see? Watch,
see . . .

Brian [takes hold of mirror] I can’t make it go this
way! [referring to making the light go behind
the mirror] If I take this off [removes mirror
from where it rests on their drawing paper], it’s
going my way. But [puts mirror back onto
paper], it’s not going my way.

Amanda The mirror has to face . . . The light has to hit
the mirror. [taps mirror with hand] And look:
light, light, light. [points to reflected beams of
light]

Brian But you said it could go anywhere. You said it
could go anywhere you wanted it to go and I
wanted it to go backwards, like this. [referring
to making the light go behind the mirror]

Amanda But the mirror [forcefully places the mirror on
their drawing paper] has to face the light
source [forceful gesture toward light source],
face the light source, and THEN you can move
it. [referring to the reflected beam of light]

The interaction of content and process that occurs during investigation
means that teachers must be mindful of children’s cognitive activity as they
undergo and interpret their experiences with the physical world. Teachers
should ask students what they are observing and what they think their ob-
servations mean about the question under investigation. Sometimes it is
useful to ask students why they think what they are doing will help them
answer the question. In addition, the teacher needs to observe what stu-
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dents observe so students can be prompted to notice important phenomena
they might otherwise ignore or be encouraged to pursue observations the
teacher believes useful to the knowledge-building process.

When investigative procedures are simple, students are able to focus
more of their attention on what the data are and what these data suggest
about the question being investigated. When procedures are more complex,
students need more time to focus on the meaning of the data apart from the
actual investigation. When students design the investigation themselves, they
may need to give more attention during the investigation to evaluating how
well their plans are working so they can make adjustments. Thus, teachers
need to monitor how well children are handling the complexity of the inves-
tigation so that sufficient time is allocated to support the knowledge-build-
ing process.23

Once the data have been collected, students need to analyze them.
Identifying patterns is a deductive analytic process in which students work
from specific datasets to identify general relationships. From this step, stu-
dents make knowledge claims, just as scientists would. That is, they make
claims about the physical world, using the patterns they identified to gener-
ate those claims. We consider this aspect of investigation to be a different
instructional phase because the nature of the cognitive activity for the teacher
and students has changed. This aspect is discussed as part of the preparing-
to-report phase.

Illustration

To illustrate the investigation phase, we draw upon an event that oc-
curred in Ms. Kingsley’s kindergarten class during their investigation of light
and shadows. Amanda and Rochelle were working together, with Amanda
basically directing Rochelle. When Ms. Kingsley checked on them and asked
questions to determine their thinking about what they were finding out, it
became clear to her that Amanda was quite certain that the shadow from an
object could be only one shape, and Rochelle appeared to go along with
whatever Amanda thought. While Amanda’s thinking was incorrect, Ms.
Kingsley chose not to intervene, recognizing that during reporting, the chil-
dren would have the opportunity to see a wider range of data and possibly
reconsider their thinking (see the illustration of the reporting phase).

The following excerpt is from Ms. Lacey’s fourth-grade class. This inter-
change occurred early in the investigation, and Ms. Lacey was checking on
a group of three girls that she knew from previous experience had found
investigative activity challenging. She began by asking which materials the
students had used in their investigation and what they had found out. She
learned that one student in the group had been working independently
instead of with the other two, and they had not been discussing their results.
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Ms. Lacey encouraged them to work together, especially since it would be
helpful to have one person holding the flashlight and material, and another
person using the light catcher.

Ms. Lacey [picks up a blue styrofoam object and shines
the flashlight on it] What’s it doing?

Mandy Some goes through.

Ms. Lacey How do you know?

Mandy Some blue light is on the wall.

Ms. Lacey Does it do anything else? [Ms. Lacey directs
the student to use the light catcher to check
other possibilities.]

Mandy Some is reflected.

Ms. Lacey Write that down.

Perhaps the most important question asked by the teacher in this ex-
cerpt is “How do you know?” This question is at the core of distinguishing
systematic research from our everyday sense making. It also sent the mes-
sage that the students were accountable for their observations, and allowed
Ms. Lacey to indicate the need to check for multiple ways in which light
might behave with the object.

The Prepare-to-Report Phase

Description

As the activity shifts to a focus on the public sharing of one’s findings
from investigation (reporting phase), the role of the class as a community of
scientific thinkers takes on new meaning. In scientific practice, this phase
marks a shift in emphasis from divergent to convergent thinking, and from
operating with the values, beliefs, norms, and conventions of the scientific
community in the background to operating with them in the foreground.24

Now it matters a great deal what fellow classmates will think and not just
what the investigating group thinks.

In this phase, just as scientists use their laboratory documents to prepare
papers for public presentation to the larger scientific community, students
use the information and observations in their notebooks to prepare materi-
als for public presentation to their classmates. The public nature of sharing
one’s claims and evidence means that students need to determine the claim(s)
for which there is enough evidence to warrant public scrutiny, and what
data they should feature as the compelling evidence backing their own claim(s)
and supporting or refuting the claims of others.
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Students can use poster-size paper as the medium for reporting, thus
allowing the information to be large enough for everyone in the class to see.
Posters are expected to include a statement of the group’s knowledge claim(s),
as well as data backing the claim(s); if groups investigated different ques-
tions, the poster should include the question as well. Data may be presented
in written, tabular, or graphical form (including figures or graphs), and stu-
dents may decide to include a diagram of the investigative setup to provide
a context for the data. (This is to be expected when students investigated in
different ways.) As each group prepares its poster, students should be think-
ing about how to present their findings to best enable others to understand
them, and be convinced of the group’s claim. Decisions about how to state
a claim and what data to include in presenting one’s claim provide impor-
tant learning opportunities.

A major aspect of the teacher’s role in this phase is to reflect the norms
of the scientific community regarding the development and evaluation of
knowledge claims. In the scientific community, for example, there is an
expectation that relationships will be stated precisely and backed by unam-
biguous and reliable data. It should also be recognized that claims can be
stated in the negative, thus indicating a relationship that is claimed to be
inaccurate—for example, the brightness of the light source does not affect
whether light reflects from an object. Such claims help the community nar-
row its consideration of possible relationships.

Another role of the teacher is to help students attend to issues that may
affect the quality of their public presentation. For example, teachers can
encourage students to draw as well as write out their ideas to communicate
them more effectively. Furthermore, teachers can prompt students to evalu-
ate their poster for its effectiveness in communicating findings. For example:
Is it readable? Are things clearly stated? Is there enough information for
others to evaluate the claim or be convinced of its validity?

Finally, a key role for the teacher is to monitor the types of claims
students are generating and the nature of the evidence they are selecting.
The teacher determines whether and to what extent to prompt students’
awareness of the role played by process in determining what they observed
(e.g., ascertaining students’ awareness of imprecise or inaccurate data). With
respect to content, the teacher determines whether and when to focus stu-
dents on particular strategies for interpreting or analyzing their data or to
provide additional information to support students in writing claims. It may
be necessary for the teacher to help groups reorganize their data to find
patterns. For example, Table 10-2 shows two tables. The top table shows the
data as they were originally recorded. The order of the columns matches the
order of places that students looked to check for light from the flashlight.
The order of objects in the first column is simply the order students selected
to observe them. The bottom table shows the same data in a similar form,
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TABLE 10-2 Data Tables from Initial Recording and with Revisions for Analysis
Purposes

Original Data Table and Observations:

On Light Catcher On Back On Light Catcher
in Front of Object of Object Behind Object

Object  (reflected) (transmitted) (absorbed)

Clear glass dim light bright light light shadow
Purple glass dim purple light bright purple light dark purple

shadow
Silver wrap bright light no light dark shadow
White plastic sheet dim light medium light medium shadow
White typing paper bright light dim light medium shadow
Black felt no light no light very dark shadow
Orange cardboard dim orange light dim reddish light dark shadow

Reorganized Data Table and Simplified Observations:

On Light Catcher On Back On Light Catcher
in Front of Object of Object Behind Object

Object  (reflected) (transmitted) (absorbed)

Black felt no light very dark shadow no light
Orange cardboard dim light dark shadow dim light
Purple glass dim light dark shadow bright light
White plastic sheet dim light medium shadow medium light
Clear glass dim light light shadow bright light
Silver wrap bright light dark shadow no light
White typing paper bright light medium shadow dim light

but to facilitate looking for patterns, the columns and rows have been reor-
dered, and the data have been simplified (information about color has been
removed). This type of reorganization and simplification of data is common
for scientists, and may be necessary for students to find patterns from which
to make a claim.

Often, the teacher’s support is at the level of helping groups figure out
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how best to state the claim(s) they want to make from their data. It does not
include evaluating whether their data support the claim; that is part of the
reporting phase and should be shared by the class.

On the other hand, the teacher may choose to support students in mak-
ing additional claims based on the data they have, particularly in instances
where the group has unique data to make a claim that the teacher believes
would promote desired knowledge-building for the class. In Ms. Lacey’s
fourth-grade class, for example, despite students’ assumptions that light would
behave in only one way with an object, a group had evidence that light
behaved in more than one way. Given that this was the only group in the
class making such a claim from that body of evidence, Ms. Lacey supported
the group to ensure that they would include the claim in their poster so it
would be introduced to the whole class.

An alternative approach involves the teacher’s questioning students dur-
ing the prepare-to-investigate phase to lead them to consider the possibility
that light may behave in more than one way. The emphasis in this case may
be on ruling out the possibility of disconfirming evidence. With this ap-
proach, the teacher monitors during the investigation phase whether stu-
dents are checking for multiple possibilities, and will know whether the
students observe light interacting with objects in more than one way.

Illustration. The following excerpt from an investigation of light by third
graders shows a typical teacher–student interaction as students attempted to
generate knowledge claims.25 The students were working with light boxes
producing narrow beams of light and had been given latitude regarding
which questions—identified during the engagement phase—they would like
to study. As a result, different groups of students investigated with different
types of materials. In the transcript, note that the students did most of the
talking. The teacher primarily asked questions to determine the nature of the
students’ thinking. Note also that the teacher reflected an important norm of
scientific activity by asking the students how they planned to represent the
observations supporting their claim.

Ms. Sutton What claim are you working on right now?

Don We had to change it because we thought that
the speed of light would be a [second-hand
investigation].

Ms. Sutton Mm hmm.

Kevin So, light can reflect off a mirror. Any other
object that’s not a mirror, like a piece of paper.
Let me demonstrate. [Ms. Sutton: Okay.] This
is a piece of paper. You see, when the light hits
the paper, it disappears. But before it disap-
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pears, it hits the paper, it goes through the
paper. It disappears.

Ms. Sutton Hmm. Does all the light disappear through the
paper?

Kevin No. Okay, you see all the light that’s coming
through, from this hole?

Ms. Sutton Yeah.

Kevin It goes to the piece of paper. It disappears
when it hits that piece—that object.

Ms. Sutton Where do you think it goes?

Don Through the paper. There’s a little light over
here. And it stops here because it doesn’t have
enough power to go anymore.

Ms. Sutton Okay. Hang on a second. So, you’re saying a
little bit of light goes through the paper. And
you think the rest of the light just disappears?

Kevin No. The rest of the light that hits the paper
disappears from the light—from the object,
cause it’s not a mirror. But if it hits the mirror it
can reflect off of it.

Ms. Sutton So if it’s a mirror, the light goes in another
direction, or reflects off. If it’s something
besides a mirror . . .

Kevin It doesn’t get reflected.

Ms. Sutton It just disappears, it doesn’t reflect?

Kevin Yep.

Ms. Sutton Okay. Are you going to try to prove that some
way to the group? You have to show some
data.

Don Well, it’s not exactly data. We sort of . . .

Kevin I drew a picture out here.

Ms. Sutton How could you show that? We could get
another piece of paper. Save what you’ve got
so far. How could you show on another piece
of paper how the light is different with differ-
ent—with the mirror and with the paper? How
could you show it? What you just said—so you
could show it to the rest of the group?

Kevin We can draw the top and just say that the light
is coming through—put light right here. And
then the light through—going out of the box.
And then we can put, make like a little part of it
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like this, like the target. And put the paper right
here.

Ms. Sutton So, Kevin is saying, when the light hits the
mirror, it looks one way. When the light hits a
piece of paper, it looks another way. How could
you show how it looks those two ways on a
piece of paper?

Don And, another thing is, I sort of drew this thing.
That’s the light that’s over here that goes there.
And then when it hits these, it stays there and
it doesn’t come back.

Ms. Sutton That’s interesting, too. But you guys need to
stick to one claim and deal with that. When
you think you have evidence for that, if you
want to explore something else and have
some time, you could do that.

The Report Phase

Description. A critical feature of inquiry-based instruction is the point at
which students’ findings are publicly shared and discussed. This phase has
two parts (see Figure 10-1). First, groups of students who have been inves-
tigating together present their claims and evidence, which are discussed by
the class in terms of their own merits and in light of the findings presented
by previous groups. Second, the class discusses the commonalities and dif-
ferences among the claims and evidence presented, noting claims that can
be rejected, developing a class list of community-accepted claims, and de-
termining claims or questions that need further investigation. In addition to
providing occasions for discussing important issues related to the investiga-
tive process (e.g., possible errors, missed observations), public reports re-
quire students to make and defend statements about their understandings,
and provide occasions for examining their own thinking and sense making
as well as that of others.26  In addition, when students publicly share their
results, the need for vocabulary and a common language to communicate
ideas becomes salient. Thus, there is an important opportunity for the teacher
to support and guide students in the use of scientific terms to facilitate their
communication.

When students first experience this activity, the teacher plays a pivotal
role in communicating and modeling expectations for audience members.
This includes establishing and maintaining conversational norms. Despite
the fact that children may need to challenge the ideas or work of their
classmates, the teacher is key in setting the tone so that this is done with the
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understanding that the students are all thinking together so they can collec-
tively determine how to understand the aspect of the physical world under
investigation. The primary expectations for audience members are to deter-
mine whether there is a clearly stated claim that is related to the question
under investigation, whether there is evidence backing that claim, and whether
the evidence is unambiguous in supporting the claim. The issue of unam-
biguous support concerns whether there is any evidence—either from other
groups or from within the presenting group’s data—that would counter the
claim. With teacher modeling and practice with the teacher’s feedback, stu-
dents become able to sustain substantive conversations regarding the knowl-
edge they are developing about the physical world.

The reporting phase is particularly complex and rich with opportunities
for the teacher to engage in supporting children’s thinking and actions. As
each group shares its claim(s) and describes the relationship between these
claims and their data, the teacher assumes multiple roles: monitoring for
understanding, working with the students to clarify ambiguous or incom-
plete ideas, seeding the conversation with potentially helpful language or
ideas, and serving as the collective memory of prior conversations (both in
the whole-class context and in the small-group investigation contexts). The
challenge in this phase of instruction is to promote the group’s advance-
ment toward deeper understanding of the phenomenon under investiga-
tion, as well as the nature of scientific ways of knowing, using the fruits
of the investigation activity and the collective thinking of the classroom
community.

The reporting phase culminates with the whole class discussing the claims
that have been shared to determine which if any have sufficiently convinc-
ing evidence (and a lack of contradictory evidence) to elevate them to the
status of “class claim”—indicating that there is class consensus about the
validity of the claim. This discussion of claims typically results in identifying
where there is disagreement among claims or contradictory evidence related
to particular claims (e.g., when the data presented by one group can also be
used to contradict the claim of another), which provides the motivation for
the next cycle of investigation.

Illustration. Excerpts from classroom instruction illustrate various aspects
of teacher and student activity during this phase. The following transcript is
from the beginning of the reporting phase in Ms. Lacey’s fourth-grade class.
Ms. Lacey introduces students to the class claim chart, on which the class
will track the claims that have been introduced and the classroom community’s
reaction to them. She also forewarns students that they have conflicting
views, anticipating the need to prepare the students to hear things from their
classmates with which they will not agree.
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Ms. Lacey And we’re going to start making a list of
claims. Or we might have a list of—we don’t
know whether we believe that or not. . . . Some
of our claims may end up being “think
abouts.” We need to think about them some
more. . . .

You know what? You guys don’t all agree. I’ve
been to every group . . . so you better pay
attention. They may not convince you, but you
might think to yourself, “aha! I’m gonna try
that.” Or, “I might need to check that out.”

Ms. Lacey’s introduction of the class claim chart sends an important
message about the dynamic nature of the inquiry process: reporting is not a
culminating activity; it is part of an ongoing activity, the next phase of which
will be shaped by what has just transpired. Her decision to alert students to
the presence of conflicting ideas provides an authentic purpose for paying
attention to one another during the reporting phase and stimulated
metacognition.

In the next excerpt, a student questions one of the claims made by the
reporting group. The group made a claim that “light can’t be trapped” and
cited as evidence that “you can’t roll it up and throw it.” The students’
interaction presents the teacher with many issues to which she could react
to support the students’ development of scientific knowledge and ways of
knowing.

Bobby When you said that you believe that light can’t
be trapped because it’s a gas, you can’t roll it
up and throw it. What do you mean?

Megan We mean we can’t grab light and throw it at
someone.

Heather It’s not solid.

Megan It’s not a liquid, either.

Bobby So you’re saying that light is a gas? How do
you know light is a gas?

Heather Air is a gas, and you can’t feel it. Well, you can
feel it only when it’s blowing. But you can’t feel
light because it’s not blowing.

Bobby So you guys are saying that you think light is a
gas because light is like air?

Ms. Lacey could have pointed out that a claim about light being a gas is
unrelated to the focus of this particular investigation; she could have trun-
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cated the interaction by providing the information that light is a form of
energy, not matter; she could have identified this claim as one that requires
further exploration, perhaps in a second-hand way. But Ms. Lacey chose not
to interject at all. While this decision has limitations with respect to develop-
ing scientific knowledge about light, it has the advantage of giving the stu-
dents opportunity and responsibility to examine one another’s thinking with
respect to the norms and conventions of scientific practice, as illustrated by
Bobby’s pressing the girls to address how they know light is a gas. Such
questions can provide opportunities for students particularly interested in a
question to pursue it outside of class, or resources might be brought into the
class (books or descriptions downloaded from the Internet) that provide
information pertinent to the question.

In the next two excerpts, Ms. Lacey responds in two different ways to
students’ questioning of the reporting group based on her judgment of the
reasons for those questions. In the first excerpt, she responds to confusion
that she suspects arises from the way students are interpreting language in
the phrasing of claims. The excerpt illustrates the language demands in-
volved in both representing one’s thinking in a claim and interpreting the
claims of others.

Barbie I’m confused—“we believe light does go in a
path.” Well, how do you know it goes in a
path? It could go different ways. [“A path”
appears to be interpreted as “one path.”]

Megan We tried it on the flashlight. It’s just straight.
[“A path” appears to have meant “a straight
path.”]

Barbie Cause there’s a whole bunch of light. Light can
go [other ways] [shows with hand]. [“A path”
appears to be interpreted as “one particular
path” instead of many possible paths.]

Megan We don’t believe that.

Ms. Lacey Can you draw a diagram on the board?
[Change from an oral to a written medium may
resolve issues due to language demands.]

The girls used a context from their preinstruction assessment—a tree, a
person, and the sun—to show two different possibilities regarding the path
of light: wavy and straight lines. They drew multiple paths from the sun and
pointed to the straight lines as the representations that matched their claim.
Ms. Lacey then worked with the class to modify the students’ claim about the
path of light so that it was consistent with the illustration:
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Ms. Lacey [to class] Can you think of some way they
could switch that claim to make more sense to
us? She’s telling us one thing, and they didn’t
put that one word in.
[to Megan and Heather] Cause you don’t think
it goes wavy, you think it goes . . .

Megan Straight.

Ms. Lacey How could you change your claim to say that?

Heather We believe light goes only in a straight path.

Ms. Lacey [to class] Will that make better sense to us?

Class Yeah.

In the second excerpt, a student struggles to make sense of the claim
that light reflects and goes through. Ms. Lacey suspects, because of the
student’s language, he has difficulty conceptualizing that light can behave in
multiple ways simultaneously. As a result, she intervenes, asking a question
to help achieve greater clarity regarding the student’s confusion:

Megan Yeah. Stefan?

Stefan Reflect and go through—on the plastic tray.
When you put it on reflect, it reflected off the
plastic tray. And when you put it on go
through, it went through the plastic tray. But I
don’t get it. If it reflected off, then how did it go
through?

Megan Well, we put it on an angle and shined it and it
went on our screen. And when we put it
straight, it went through.

Ms. Lacey Stefan, are you having a hard time thinking
that light can do two things at once? If it
reflects off, why did it also go through? Did
they explain?

In both of the above examples, as well as in the excerpt at the begin-
ning of this chapter in which a second-grade student objected to a claim
about light reflecting from wood, students are revealing that they lack a
conception of light that allows it to behave in the ways indicated by other
students. Brad does not have a way to think about light that would account
for its ability to reflect from wood. Stefan does not have a way to think about
light that would account for its ability to simultaneously reflect and pass
through an object. How does some of the light “know” to reflect, while other
light gets transmitted through the material? These are reasonable issues, and
we should not be surprised that the students do not readily accept claims
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that speak to a reality they do not believe. It is part of the scientific culture to
be skeptical about claims that do not fit existing scientific theories, as these
claims clearly did not fit the students’ preexisting ideas. Indeed, there are
numerous examples of scientific papers that presented novel scientific claims
and were rejected by top scientific journals because of their inconsistency
with prevailing knowledge and beliefs, but later became highly regarded
and even prize-winning.27  Thus when such events occur, it is important for
the teacher to recognize that the issue is the fit between the idea presented
and the students’ conceptual framework. As How People Learn suggests, it is
precisely in these situations that students’ thinking must be fully engaged if
they are to develop desired scientific understanding.

There are several ways to proceed in such circumstances. Some re-
search has demonstrated that having students observe relationships can lead
them to change their initial thinking about those relationships,28  or at least
come up with alternative ideas.29  In the case of the second grader who was
skeptical about the reflection of light, this would mean setting up the mate-
rials so he could observe the reflection from wood that his classmates saw
and providing opportunities to examine the reflection from other solids.
Other researchers have proposed engaging students in reasoning through a
series of phenomena that are closely related,30  helping students bridge analo-
gous circumstances. In the case of disbelief about light reflecting from wood
or other nonshiny solids, this might mean starting with observing instances
of reflection that students readily accept (e.g., reflection from a mirror);
linking to observations of a very thick mirror, whereby the light beam can be
seen traveling through to the silvered back surface of the mirror and reflect-
ing from there; linking to reflection from a less reflective surface, such as
lead (a metal, but not shiny); then linking to a similarly less reflective surface
but of a different type, such as gray construction paper; and so on. The
bridging could go as far as examining reflection from black felt, a material
students are initially quite sure does not reflect light, but can be observed to
do so if the room is dark enough.31

Another approach to addressing the nonacceptance of claims that con-
tradict everyday experience is to tell students that part of learning science
means developing new conceptions of reality.32  This does not necessarily
mean discarding existing ideas.33  However, it does mean that students need
to recognize that in a science context, the cultural beliefs and practices that
guide knowledge production in the scientific community dictate what knowl-
edge is valued and accepted and hence is considered scientific knowledge,34

and that they need to operate accordingly in their knowledge-building activ-
ity during science instruction.

Despite the challenge of accepting claims that are initially counter to
everyday thinking, we have regularly observed students, even very young
children, developing new ideas that are counter to their initial thinking. The
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following example comes from Ms. Kingsley’s kindergarten class during their
study of light and shadows. The class was discussing two claims that arose
from the day’s investigation and were posted on the board: (1) an object can
make more than one shadow shape, and (2) an object can make only one
shadow shape. When Ms. Kingsley asked the class to evaluate the claims in
light of the data from students’ investigations, which were also posted,
Amanda, who had repeatedly stated her view that an object’s shadow can be
only one shape, gave the following response:

Ms. Kingsley Okay, look at the evidence we’ve got here.
Does it support the claim that objects make
more than one shadow?

Amanda Both.

Ms. Kingsley You think it says both Amanda, tell me why.

Amanda Because um [touching each of the posters with
multiple shapes of shadows], all shadow, all
shadow, all shadow, all shadow. [touching
each of the drawings containing only one
shape of shadow] One shadow, one shadow.

Here, Amanda correctly pointed out that the data did not conclusively
support one claim over the other, drawing attention to the ambiguity of the
results. This provided a reason to investigate further, so the teacher sug-
gested that the class do so the next day. The next excerpt is an exchange
that occurred following the next day’s investigation. Again, all the groups’
data were posted at the front. After examining the data from the second day,
all of which showed more than one shadow, Amanda provided a different
evaluation of the evidence:

Ms. Kingsley We need to find out if the documentation
supports that a shape can make one shadow or
more than one shadow. Does this evidence
support the claim . . . [points to the two posted
claims]

JT More!

Derek One!

Amanda The first one [an object can make more than
one shadow] is true.

Ms. Kingsley Why?

Amanda Because one object can make more shadows,
see? Because look at all these shadows on the
papers. [runs hand along all the posters
because they all show multiple shapes of
shadows for an object]
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Of note is that Ms. Kingsley and the other teachers featured in this
section allowed the children to work with the ideas they had, but pressed
them to continually reexamine those ideas in light of the results of their own
and others’ investigations. Amanda needed the time of several cycles of
investigation to become convinced of a different idea from the one she
initially held. Thus, the cycling process of investigation within the same
context is an important aspect of promoting desired development of scien-
tific knowledge and ways of knowing.

Second-Hand Investigation

Our focus thus far has been on the development of understanding through
first-hand investigation. Such experiences give students repeated opportuni-
ties to articulate and test their reasoning and ideas against one another’s
first-hand observations, and steep them in the differences between a scien-
tific approach to knowledge building from experience and a more casual
everyday approach. However, inquiry-based science instruction can also
profitably include learning from text-based resources (as suggested by the
National Science Education Standards).35  The study of accumulated knowl-
edge is authentic to scientific practice36  and involves cognitive activities that
have many similarities with first-hand inquiry about the physical world.37

Second-hand sources can also reliably focus student attention on the core
concepts of interest. The question is how to engage students in such activity
in a way that keeps them actively engaged intellectually relative to scientific
ways of knowing and permits a skeptical stance that is common to a scien-
tific mindset.

To achieve this goal, we developed a novel type of text for inquiry-
based instruction, whose use is called a second-hand investigation. These
texts are modeled after the notebook of a scientist and so are referred to as
notebook texts. They consist of excerpts from the notebook of a fictitious
scientist, Lesley Park, who uses her notebook to “think aloud” regarding the
inquiry in which she is engaged, sharing with the reader her observations of
the phenomenon she is studying, the way in which she has modeled that
phenomenon, the nature of her investigation, the data collected in the course
of her investigation, and the knowledge claims suggested by the data.38

We share excerpts from this instruction to illustrate how text can be
approached in an inquiry-based fashion to support students’ engagement in
scientific reasoning and what role the teacher plays in such activity. The
specific notebook text with which the children were working reports on an
investigation with materials very similar to those used by the students in
studying the interaction of light with matter, although there were several
differences in Lesley’s investigation, including her use of a light meter to
measure the light she observed.
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Of note are the various ways that the teacher, Ms. Sutton, supported the
students’ learning from the text. For example, she led the students in a quick
overview of the text during which the students identified the features that
signaled this was a scientist’s notebook: a header with the scientist’s name
and date of activity, drawings showing investigative setups, and tables of
data. During the reading of the text, a significant amount of time was de-
voted to examining the relationship between the information in the note-
book and the students’ own experiences. Ms. Sutton accomplished this by
revisiting the claims list arising from the students’ own first-hand investiga-
tions. The students identified those claims on which there was consensus
and those that were still under consideration, but for which there was insuf-
ficient evidence. In addition, there were numerous instances in which Ms.
Sutton called the students’ attention to vocabulary that was introduced in the
notebook text and how it compared with terms the students had been using
in their own writing and discussion (e.g., Lesley’s use of “absorbed” to de-
scribe the behavior students referred to as the “blocking” of light).

The following three excerpts illustrate how the text, in combination
with the teacher’s facilitation, supported the students’ engagement in scien-
tific reasoning. In the first excerpt, the students have encountered a table in
which Lesley presents data in units she calls “candles.”

Ms. Sutton Okay, it’s the readout of how many candles.
And right now it’s showing the flashlight all by
itself has . . .?

Leo Ten candles.

Ms. Sutton Ten candles.

Jihad Could it be like 10.5 or something or 10.3?

Ms. Sutton I would imagine. Don’t you think it could go up
or down depending on how bright the light is?

Jihad So, if she puts zero candles, so that means it
doesn’t transmit at all?

Ms. Sutton Yes. Good observation.

Tatsuro Are there such thing as like, um, a millicandle?

Ms. Sutton mediated the students’ sense making with the table. To un-
derstand any of the other findings in this table, it was important for the
students to recognize that the amount of light from the light source (the
flashlight) was “ten candles.” This discussion, however, led several students
to wonder about this unit of measure. Transferring their knowledge about
other units of measure, they inquired about the system from which this unit
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is derived and how that system “works” (i.e., whether it works like the
metric system).

In the next excerpt, the students have encountered Lesley’s claim that
“all objects reflect and absorb light.”

Ms. Sutton What evidence did you see that would support
that [all objects reflect and absorb] even
though that wasn’t your claim?

Ian That almost all the objects did and maybe if we
used a light meter, we might have found out
that every single object did a little.

Ms. Sutton How about you, Megan?

Megan Some objects did both things—two different
things, but not . . . we didn’t, like, kind of find
out that for all objects . . .

Ms. Sutton If you had done more, do you think we might
have?

Megan Maybe.

Ms. Sutton If you had tested more?

Megan We didn’t do all the objects, yet.

In this exchange, we see how Ms. Sutton related the second-hand inves-
tigation to the students’ first-hand investigation by calling their attention to
the differences between their claims and Lesley’s claim. This led to a discus-
sion of two issues: the role of measurement and the sample size. Lesley used
a light meter to collect her data, while the children had no means of mea-
surement; they simply described their visual observations as precisely as
possible. Ian suggested that with a measuring device, the class’s findings
might have been consistent with Lesley’s. Ms. Sutton introduced the possi-
bility that additional investigation might have yielded a different finding, to
which Megan responded that the class had not investigated with all the
materials yet. Determining how much evidence is enough to make a broad
claim confidently, such as “all objects reflect and absorb light,” is fundamen-
tal to scientific problem solving.

In the following excerpt, the students entertain other possible explana-
tions for the differences between their findings and Lesley’s. In this instance,
Lesley is reporting the data for what happens when a flashlight shines on a
piece of black felt. She reports that no transmitted light was recorded by her
light meter. The majority of students, however, reported having seen trans-
mitted light. Here the class considers why there might be these different
findings:
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Catherine When we stuck the lamp like, not like directly
next to the black but a little bit up close to the
black, it came out a maroon color on the other
side.

Ms. Sutton So we were getting some transmitted. We
thought we had some transmitted light, too.
She’s not getting—detecting that, is she, with
her light meter?

Jihad But she would be more sure because she has a
light meter and we don’t.

Ms. Sutton What might cause a difference in results from
what you did and from what she did?

Student She may have had her flashlight back farther
and we had ours up very close.

Ms. Sutton Anything else might have made a difference?
Ian?

Ian She might have either had a weaker flashlight
or a thicker piece of felt or something.

Ms. Sutton Okay, so two things there.

Student Yeah, or maybe it was because of the light
meter.

Ms. Sutton What about the light meter? How would the
light meter make it harder to detect transmit-
ted light?

Tatsuro Because it’s in, measuring in the tens. What if
it was like 0.09?

Ms. Sutton So maybe it’s not measuring to the tenth or the
millicandle?

Student Or maybe she’s just rounding off.

Ms. Sutton Maybe she’s rounding it off. Maybe the little
machine rounds off. Good.

Louise Or maybe it’s because like, in the diagram, it
shows it had the sensor pretty far back. Maybe
the transmitted light didn’t go that far.

In this excerpt, the students began to identify the range of variables that
might explain the differences between their outcomes and Lesley’s, includ-
ing differences in the setup, the materials, the strength of the light source,
the device used to record the data, and the scientist’s decisions regarding the
reporting of the data. This exchange is significant to the extent that the
students demonstrate an appreciation for the role variables play in the de-
sign of an investigation. With this understanding, they are now situated to
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consider the control of variables that is necessary so that only a single con-
trast is featured in an experiment.39

One final observation about the successful use of text in inquiry-based
instruction is the importance of students assuming a skeptical stance rather
than simply deferring to the text. The following three excerpts are illustra-
tive. The first two are examples of instances in which students questioned
the generality of Lesley’s claim that “all objects reflect and absorb light.” In
the first instance, Kit interjects, “I think that she says ‘all’ too much. Like she
could just say ‘most’ or she could test more objects because ‘all’ is kind of a
lot because she only tested like, seven.” Ms. Sutton responds, “Okay, so
you’re saying you don’t know if she’s tested enough to say ‘all,’ to make that
kind of statement.”

The second excerpt begins when one student, Katherine, expresses
concern that Lesley has not provided sufficient information about the kinds
of materials with which she investigated. This leads a second student, Megan,
to observe that the objects with which Lesley investigated are quite similar
(i.e., they are all “flat”) and that Lesley should have selected objects with
different characteristics if she wished to make the claim that “all objects
absorb and reflect light.” Ms. Sutton prompts for more specificity, to which
Megan responds, “None of them are kind of like a ball or something that’s
3-D. They’re all, like, flat . . . because something that’s 3-D . . . it gets thicker
because if you had a green ball and you shine light through, it would be
. . . probably be a darker color because there’s two sides to a ball and not
just one.”

In a related criticism, Kit observes that Lesley needed to consider not
only the color of the object she was investigating, but also the material of
which it was made:

Kit I don’t think the claim would be as true if the
white [objects] were different materials.

Ms. Sutton Okay, so you would get a—if you had a light
meter to measure like she did and you were
measuring all the black objects on this list, do
you think you still would get different read-
ings? They’d absorb differently? They wouldn’t
all absorb the same amount?

Students Yeah . . . yeah. . . .

Ms. Sutton How many people agree with that, that all the
black objects probably wouldn’t absorb the
same amount of light? Okay, so they’re
agreeing with you.
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SUPPORTING LEARNING THROUGH
CYCLES OF INVESTIGATION

Whether students’ experiences with investigation are first- or second-
hand, the outcome of any single cycle of investigation will not result in
development of all the targeted knowledge and reasoning goals for a par-
ticular topic of study. Thus, inquiry in any topic area requires multiple cycles
of investigation. Discussion of how to design curriculum units with cycles of
investigation and the interplay between first- and second-hand experiences
is beyond the scope of this chapter. The important point is that students
need to have multiple opportunities to learn concepts (i.e., multiple cycles
of investigation that provide occasions for dealing with the same concepts)
and encounter those concepts in multiple contexts (e.g., reflection is studied
in contexts with mirrors, as well as in contexts with other opaque objects).
The purpose of this section is to discuss how teachers might think about the
development of knowledge across cycles of investigation.

The classroom community determines the fate of any knowledge claim
generated by a group. Within and across each cycle, knowledge claims are
generated, tested, refuted, tweaked, embraced, discarded, and ignored. (Note
that the teacher’s guidance is critical to ensure that false claims are not
embraced without further exploration and that core claims are understood.)
Figure 10-3 illustrates this process. In this case, the class worked with five

Cycle I

Cycle 2

Cycle 3

synthesized
knowledge claim

CLAIMS

FIGURE 10-3 The development
of community knowledge across
cycles of investigation.
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knowledge claims during Cycle 1 of its investigation. Following the report-
ing phase, two of these claims were abandoned: one because the child who
had initially championed it no longer did so, and the other because there
was significant evidence countering it. Three claims survived this first cycle
of inquiry: one because there was clear and consistent data supporting it,
and the other two because the data were insufficient to make a definitive
judgment.

The reporting phase of Cycle 2 of the investigation led to the emergence
of a new claim and the abandonment of one of the initial claims because
only one of nine groups presented evidence in support of that claim, and
the class expressed reservations regarding that group’s data collection pro-
cedures. The two remaining claims survived, but were revised in ways that
suggested they might be related.

Cycle 3 began with the class considering three extant claims. During the
reporting phase, the two claims that appeared to be related became com-
bined and synthesized into one claim. This is a significant development from
a scientific perspective given the value placed on simplicity and parsimony
of claims about the physical world. The final claim, while still in the running,
was not accepted by the class, but neither was it rejected.

This progression of events with the community knowledge claims re-
sulting from each cycle is like threads that when woven together create the
fabric of scientific knowledge and reasoning on the topic of study. Some
threads will dangle, never fully attended to; some will be abandoned; while
others will be central to understanding the topic of study and may need to
be blended together to create a strong weave. The fate of each thread is
determined by classroom community judgments about which claims have
the most evidence, account for the greatest range of data, and are simple
and concise; that is, the standards for acceptance are values adhered to by
scientists in the production of scientific knowledge. Although it can be
difficult for teachers to stand by while students initially make scientifically
inaccurate claims, the teacher’s imposition of the constraints of the scien-
tific community’s cultural norms—norms that the students themselves even-
tually enforce—results in the final set of community claims being scientifi-
cally accurate or having indeterminate status with respect to science.
Furthermore, whereas dangling threads in a fabric are problematic, they are
important to the process of learning science because the reasons for reject-
ing or abandoning claims form part of the understanding of scientific ways
of knowing.

The Development of Conceptual Frameworks

Imagine now that the students have been through several cycles of in-
vestigation. What is to prevent these cycles from being experienced as a set
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of disconnected experiences, resulting in isolated knowledge? How are the
students to develop, elaborate, and refine conceptual frameworks from re-
peated inquiry experiences? We have argued40  that the “threads that bind”
take the form of explicit attention to the relationships among knowledge
claims. Conclusions from How People Learn tell us that the formulation of a
conceptual framework is a hallmark of developing deep understanding, and
that a focus on the development of deep understanding is one of the prin-
ciples distinguishing school reform efforts that result in increases in student
achievement from those that do not.41

The development of organized knowledge is key to the formulation of
conceptual frameworks. Developing organized knowledge is enabled by
well-designed curriculum materials, but requires specific guidance by teach-
ers as well. Some of that guidance needs to involve pressing students to
work from the perspective of the norms for knowledge building in the sci-
entific community. For example, scientists assume that there are regularities
in how the world works. If the sky appears gray with no evidence of clouds
or the sun, a scientist, who has seen the sun in the sky every other day, will
assume that it is still there and infer that something must be blocking it. This
perspective dictates different questions than one that does not assume such
regularity.

Another area of guidance comes from pressing students to focus on the
relationships among the claims they are making. Sorting out these relation-
ships may result in multiple claims being revised into a single claim, as
shown in Figure 10-3. Alternatively, revisions may need to be more exten-
sive to fit the expectation of scientists that relationships within a topic area
fit together; that is, they are coherent with one another.42  If we claim that
light reflects off the front of a mirror but does not appear to reflect off the
back, or if we claim that light can go through glass but does not go through
a glass mirror, what is the relationship between those ideas? It is not coher-
ent to claim that light does and does not reflect from a mirror. Similarly, it is
not coherent to say that light transmits through glass but not through a glass
object (i.e., a mirror). Of course, the coherent view is that light is transmitted
through glass, but in the case of a mirror, it is transmitted through the glass
part but reflects from the backing that is placed on the glass to make it a
mirror. To develop these kinds of perspectives, students must learn concepts
in combination, with attention to the relationships among them.

Illustration: The Development of Conceptual
Frameworks for Light

In this section we trace the development of student understanding about
light over four cycles of investigation in Ms. Lacey’s class, guided by the
question of how light interacts with matter. This instruction took place over
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4 weeks, with each cycle taking about a week of daily instruction. We present
concept maps constructed from classroom discourse during the instruction.43

That is, the maps represent the collective knowledge building that would be
evident to the teacher and the class. Transcript excerpts accompany the
maps to illustrate the nature of the conversation among the students and
teacher.

During Cycle 1, students focused on the differences among objects,
assuming that light interacted with each object in only one way. During
reporting, they made statements such as: “Light can go through glass if it’s
clear enough,” “Light reflects off mirrors and shiny materials, too,” and “We
had a solid thing here. It just stopped at the object. It didn’t reflect.” Students
wrestled with whether claims indicating that light could “be blocked” and
“stay in” meant the same thing or something different. Figure 10-4 suggests
that students thought light could interact with matter in one of three ways.

The question marks in the figure indicate that some individuals or groups
asserted the relationships shown, but not all the students accepted these
relationships, including one group that provided evidence that light can
interact with an object in two ways—a finding that could have dramatically
changed the structure of the class’s knowledge from what is shown in the
figure. This particular group did not recognize the significance of its find-
ings, focusing instead on the one way it should categorize objects from
which it had observed multiple interactions. In the following excerpt, the
teacher encourages the group to think of its results as a new claim.

Kevin We saw sort of a little reflection, but we, it had
mostly just see-through.

Ms. Lacey So you’re saying that some materials could be
in two different categories.

?=?

And?

REFLECTS

GOES
THROUGH

STAYS IN

COLOR
LIGHT

INTERACTS WITH
MATERIALS

BLOCKED

FIGURE 10-4 Community knowledge from the first cycle of investigation (first-hand).
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Derek Yes, because some were really see-through
and reflection together, but we had to decide
which one to put it in.

Ms. Lacey Do you think you might have another claim
here?

Kevin Light can do two things with one object.

With the introduction of the idea that light can interact with matter in
more than one way, the students embarked upon a second cycle of investi-
gation with the same materials, with the intent of determining which if any
objects exhibited the behavior claimed by Kevin and Derek. From this sec-
ond round of investigation, all groups determined that multiple behaviors
can occur with some objects, but there was uncertainty about whether these
interactions occur with some types of materials and not others (see Figure
10-5). Nevertheless, the significance of this day’s findings is that they repre-
sent a different conceptual organization from that of the first cycle (see
Figure 10-4) to the extent that light is not confined to behaving in only one
way. At the same time, the possibilities for the behavior of light have in-
creased significantly, and only the case of four types of interaction has been
ruled out in discussion by the community (following interaction comparing
what different groups meant by “blocked” versus “absorbed”).

NOT

LIGHT

INTERACTS WITH

MATERIALS

1 THING

2 THINGS

3 THINGS

4 THINGS

R

A

T
R+T

R+A

T+A

R+T+A

SOME

SOME

SOME

or

or

block=A

R+T+block+A

FIGURE 10-5 Community knowledge from the second cycle of investigation (first-hand).
R = reflect; T = transmit; A = absorb.
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In addition, some students expressed puzzlement about how light could
interact with a material in more than one way. In response to this question,
one group introduced the idea that there was a quantitative relationship
among the multiple behaviors observed when light interacted with an
object:

Miles If you said that light can reflect, transmit, and
absorb, absorb means to block. How can it be
blocked . . . and still go through?

Corey If just a little bit came through, then most of it
was blocked.

Ms. Lacey Would you draw him a picture, please? [Corey
and Andy draw setup.]

Corey Here’s the light, a little being blocked inside,
and a little of it comes out . . .

Andy Some of it’s reflecting.

During the third cycle of investigation, in which the students and the
teacher interactively read a Lesley Park notebook text about light using re-
ciprocal teaching strategies,44  the students encountered more evidence that
light can interact with matter in multiple ways (see Figure 10-6). This led to
conversation concerning how general a claim might be made about the
behavior of light:

Andy Can all objects reflect, absorb, and transmit?
Tommy?

Tommy Most of them.

Andy Corey?
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R+A

R+T+A

ALWAYS

SOME

FIGURE 10-6 Community knowledge from the third cycle of investigation (second-hand).
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Corey Yes, because it says right in here, “Light can be
reflected, absorbed and transmitted by the
same object.”

Ms. Lacey I think we need to clarify something, because
you said one thing, Corey, and Miles said
something else. Andy’s question was “Can all
objects reflect, absorb, and transmit light?”

Alan No. It just says light can be reflected, ab-
sorbed, and transmitted by the same object. It
doesn’t say anything about every object.

Ms. Lacey So you say not all can. Do we have any data in
our reading that tells us that not all things
absorb, reflect, and transmit?

Tommy We have evidence that all objects reflect and
absorb [referring to a table in the notebook
text].

The concept map representing the community’s understanding about
light up to this point shows greater specification of the prevalence of rela-
tionships (“always” versus “sometimes”) and a narrowing of the possible
relationships that can occur when light interacts with matter: light always
reflects and is absorbed.

Lesley’s quantitative data about the amount of reflection and transmis-
sion of light from an object as measured by a light meter supported addi-
tional conversation about the issue of quantitative relationships raised by
one group in the previous cycle. However, students did not yet add those
ideas to their class claims chart.

In the fourth cycle of investigation, students returned to a first-hand
investigation and were now quite comfortable with the idea that light can
simultaneously interact with matter in multiple ways. In addition, despite
not having tools to compare the brightness of the light, they qualitatively
compared the amount of light behaving in particular ways. This is repre-
sented in the map in Figure 10-7.

Do all students have the understanding represented in Figure 10-7? The
excerpt below suggests that this is unlikely. In this excerpt, a student reveals
that he and his partner did not think light would reflect from an object even
after the class had established in the previous cycle that light always reflects:

Ms. Lacey When you saw the blue felt, is that the claim
you first thought?

Kenny Yeah, we learned that this blue felt can do
three—reflect, transmit, and absorb—at one, at
this one object. And it did. It reflected a little,
and transmitted some and it absorbed some.
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Ms. Lacey And when you started out, what did you think
was going to happen?

Kenny That it was only going to transmit and absorb.
We didn’t think it would reflect.

Ms. Lacey What do we know about materials and reflect-
ing?

Class They always reflect and absorb.

We see the teacher checking on the student’s understanding, which is
scientifically accurate. But we know that for such a claim—that light reflects
off all materials—many experiences may be needed for that knowledge to
be robust. Relationships such as this for which we have no direct experience
or that are counterintuitive (we see reflected light from objects, not the
objects themselves) take time and attention, as well as recursive tacking to
knowledge-building processes and the conceptual framework that is emerg-
ing from those processes. Conceptual frameworks that represent the physi-
cal world in ways we have not experienced (e.g., the electromagnetic spec-
trum) or are counterintuitive (light is a particle and a wave) pose even greater
challenges to the development of scientific knowledge.

THE ROLE OF SUBJECT-SPECIFIC KNOWLEDGE
IN EFFECTIVE SCIENCE INSTRUCTION

At the core of teacher decision making featured in this chapter is the
need to mediate the learning of individual students. To do this in a way that
leads to targeted scientific knowledge and ways of knowing, teachers must
be confident about their knowledge of the learning goals. That is, teachers
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FIGURE 10-7 Community knowledge from the fourth cycle of investigation (first-hand).
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must have sufficient subject matter knowledge, including aspects of the cul-
ture of science that guide knowledge production, to fully understand the
nature of the learning goals. When students say that light “disappears” into
paper but reflects off of mirrors, a teacher’s uncertainty about whether that
claim is accurate will hamper effective decision making. When students claim
an object is opaque and the question at hand is how light interacts with
matter, the teacher needs to recognize that the word “opaque” describes the
object and not light, and that an opaque object can reflect and absorb light
and even transmit some light in certain cases (e.g., a piece of cardboard).

At the same time, having accurate subject matter knowledge is not suf-
ficient for effective teaching. When students claim that light is a gas, it is not
sufficient for the teacher to know that light is energy, not a state of matter.
The teacher also needs to know what observations of light might convince
students that it is not a gas, which in turn is informed by knowing how
students think of gases, what their experiences of gas and light have likely
been, and what it is possible to observe within a classroom context. This
knowledge is part of specialized knowledge for teaching called pedagogical
content knowledge because it is derived from content knowledge that is
specifically employed to facilitate learning. It is the knowledge that teachers
have about how to make particular subject matter comprehensible to par-
ticular students.45

Pedagogical content knowledge includes knowledge of the concepts
that students find most difficult, as well as ways to support their understand-
ing of those concepts. For example, it is difficult for students to understand
that the color of objects is the color of light reflected from them because we
are not aware of the reflection. Having students use a white screen to exam-
ine the color of light reflected from colored objects can reveal this phenom-
enon in a way that is convincing to them. Pedagogical content knowledge
also includes knowledge of curriculum materials that are particularly effec-
tive for teaching particular topics. A still valuable resource for the study of
light in the elementary grades is the Optics kit mentioned earlier that is part
of Elementary Science Study curriculum materials developed in the 1960s. A
teacher’s knowledge of these materials and how they can be used to support
knowledge building is key to employing them effectively in mediating stu-
dent learning.

Finally, pedagogical content knowledge includes ways to assess student
knowledge. A classic item to determine students’ understanding of how we
see is a diagram with the sun, a tree, and a person looking at the tree.46

Students are asked to draw lines with arrows in the diagram to show how
the person sees the tree. Arrows should be drawn from the sun to the tree to
the person, but it is not uncommon for students to draw arrows from the sun
to the person and the person to the tree. Use of this item at the beginning of
a unit of study can provide a teacher with a wealth of information on current
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student thinking about how we see, as well as stimulate students to wonder
about such questions.

The more teachers know and understand about how their students think
about particular concepts or topics of study, how that thinking might de-
velop and unfold during systematic study of the topic, and how they might
ascertain what students’ understanding of the topic is at any point in time,
the better they are able to optimize knowledge building from students’ var-
ied experiences and support students in developing desired scientific knowl-
edge and ways of knowing. When and how to employ particular strategies
in the service of supporting such knowledge building is a different issue, but
the topic-specific knowledge for teaching that is identified as pedagogical
content knowledge is a necessary element if students are to achieve the
standards we have set.

CONCLUSION
Science instruction provides a rich context for applying what we know

about how people learn. A successful teacher in this context is aware that he
or she is supporting students in activating prior knowledge and in building
upon and continuing to organize this knowledge so it can be used flexibly
to make sense of and appreciate the world around them. To do this well, the
teacher must be knowledgeable about the nature of science, including both
the products—the powerful ideas of science—and the values, beliefs, and
practices of the scientific community that guide the generation and evalua-
tion of these powerful ideas. Furthermore, teachers must be knowledgeable
about children and the processes of engaging them in knowledge building,
reflecting upon their thinking and learning new ways of thinking.

We have proposed and illustrated a heuristic for conceptualizing in-
struction relative to the opportunities and challenges of different aspects of
inquiry-based instruction, which we have found useful in supporting teach-
ers in effective decision making and evaluation of instruction. We have ar-
gued that the development of scientific knowledge and reasoning can be
supported through both first- and second-hand investigations. Furthermore,
we have proposed that the teacher draws upon a broad repertoire of prac-
tices for the purposes of establishing and maintaining the classroom as a
learning community, and assessing, supporting, and extending the knowl-
edge building of each member of that community. All of these elements are
necessary for effective teaching in the twenty-first century, when our stan-
dards for learning are not just about the application of scientific knowledge,
but also its evaluation and generation.



470 HOW STUDENTS LEARN: SCIENCE IN THE CLASSROOM

NOTES
1. Schwab, 1964.
2. Hapgood et al., in press; Lehrer et al., 2001; Magnusson et al., 1997; Metz,

2004.
3. National Research Council, 2003.
4. These materials, originally developed in the 1960s, can be purchased from

Delta Education: http://www.delta-education.com/.
5. Whereas some view conceptual change as referring to a change from existing

ideas to new ones, we suggest that new ideas are often developed in parallel
with existing ones. The new ideas are rooted in different values and beliefs—
those of the scientific community rather than those guiding our daily lives.

6. Chi, 1992.
7. Galili and Hazan, 2000.
8. Our decision to focus on instruction in which investigation is central reflects

the national standard that calls for science instruction to be inquiry based.
9. We use the term “guided” inquiry to signal that the teacher plays a prominent

role in shaping the inquiry experience, guiding student thinking and activity to
enable desired student learning from investigation.

10. Magnusson and Palincsar, 1995.
11. Barnes, 1976; Bybee et al., 1989; Karplus, 1964; Osborne and Freyberg, 1985;

Lehrer and Schauble, 2000.
12. All of the instruction featured in this chapter was conducted by teachers who

were a part of GIsML Community of Practice, a multiyear professional devel-
opment effort aimed at identifying effective practice for inquiry-based science
teaching.

13. This discussion draws on a study focused on children’s self-regulation during
science instruction, which took place in a school in a relatively small district
(about 4,600 students) that includes a state university. Approximately 45 per-
cent of the students in this district pass the state standardized tests, and 52
percent are economically disadvantaged.

14. This class is in a school in a relatively small district (about 3,000 students) near
a major industrial plant in a town with a state university. Approximately 38
percent of the students in this district pass the state standardized tests, and 63
percent are economically disadvantaged.

15. While we are featuring contexts in which there is a single question, teachers
could choose to have a context in which children are investigating different
questions related to the same phenomenon. However, it is important to recog-
nize the substantially greater cognitive and procedural demands this approach
places on the teacher, so it is not something we recommend if a teacher is
inexperienced in conducting inquiry-based instruction.

16. Although it can be motivating and conceptually beneficial for students to be
placed in the role of generating questions for investigation, the teacher needs
to be mindful of the consequences of taking time to investigate questions that
may be trivial or peripheral to the unity of study. The teacher may judge the
time to be useful as students can still learn a great deal about investigation, but
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the teacher also may seek to reshape the question so it is not so conceptually
distant as to sidetrack the focus relative to the desired content goals.

17. Hapgood et al., in press; Lehrer et al., 2001; Metz, 2004.
18. This person monitors the time the group is taking for the investigation to

support the students in examining how efficiently they are working and decid-
ing whether it is necessary to adjust the tempo of their activity to finish in the
allotted time.

19. It is very reasonable for the teacher to discuss these issues with the whole class
during the preparing-to-investigate phase and to invite the class to specify
procedures. Addressing these matters with the whole class gives the teacher
opportunities to model thinking for the benefit of all. However, while this is
enabling for students when they are quite new to investigating, it constrains
students’ development of the knowledge and skills needed to make these
decisions independently. Thus it is important for the teacher to give students
an opportunity to make these types of decisions on their own during some
investigations.

20. Herrenkohl et al., 1999.
21. The students inadvertently interpreted the idea of categorizing to mean that

light would behave in only one way with each object. This led many students
to stop observing an object as soon as they had identified one way light be-
haved with it.

22. In both cases, the fact that we can see the object tells us that light is reflected.
However, students had not yet established that relationship, so we refer here
only to the direct evidence of light.

23. Blumenfeld and Meece, 1988.
24. Magnusson et al., in press.
25. This class is in a moderately sized district (about 16,700) students) in a town

with a major university. Approximately 70 percent of the students in this dis-
trict pass the state standardized tests, and 16 percent are economically disad-
vantaged.

26. Brown and Campione, 1994; Palincsar et al., 1993.
27. Campanario, 2002.
28. Osborne, 1983.
29. Magnusson et al., 1997.
30. Clement, 1993
31. We observed a group of children in a fourth-grade class working very hard to

determine if black felt reflects light. They piled their materials in the bathroom
in the classroom, taped around the door to block out any light, and studied the
black felt. They were quite proud to report their evidence that it did indeed
reflect light.

32. Chi, 1992.
33. Mortimer, 1995.
34. Driver et al., 1994.
35. National Research Council, 1996.
36. Crawford et al., 1996.
37. Magnusson and Palincsar, in press-b.
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38. See Magnusson and Palincsar (in press-a) for discussion of the theory and
principles underlying the development of these texts; Palincsar and Magnusson
(2001), for a more complete description of Lesley’s notebook and of research
investigating the use of these notebook texts; and Magnusson and Palincsar (in
press-b) for a discussion of teaching from these notebook tests.

39. Klahr et al., 2001.
40. Magnusson et al., in press; Palincsar et al., 2001.
41. Newmann et al., 1995.
42. Einstein, 1950.
43. Ford, 1999.
44. Palincsar and Brown, 1984.
45. Magnusson et al., 1999; Wilson et al., 1988.
46. Eaton et al., 1984.
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11

Guided Inquiry in the Science Classroom
James Minstrell and Pamela Kraus

The story of the development of this piece of curriculum and instruction
starts in the classroom of the first author more than 25 years ago. I had
supposedly taught my classes about universal gravitation and the related
inverse square force law. The students had performed reasonably well on
questions of the sort that asked, “What would happen to the force if we
increased the distance from the planet?” They supposedly understood some-
thing about gravitational forces, resistive forces of air resistance and friction,
and the idea of force in general. Then came a rude awakening.

I don’t remember why, but we happened to be talking about a cart
being pulled across a table by a string attached to a weight over a pulley.
The students were becoming confused by the complexity of the situation.
So, in an attempt to simplify the context, I suggested, “Suppose there is no
friction to worry about, no rubbing, and no friction.” Still the students were
confused and suggested, “Then there would be so much wind resistance.” I
waved that notion away as well: “Suppose there were no friction at all and
no air resistance in this situation. Suppose there were no air in the room.
Now what would be the forces acting on this cart as it was moving across
the table?”

I was not prepared for what I heard. Several voices around the room
were saying, in effect, “Then things would just drift off the table. The weight
and string and cart would all just float away.” I was tempted to say, “No,
don’t think like that.” I suppressed that urge and instead asked in a
nonevaluative tone, “Okay, so you say things would just float away. How do
you know that?” They suggested, “You know, like in space. There is no air,
and things just drift around. They aren’t held down, because there is no air
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to hold them down.” The students said they knew this because they had
heard from the media that in space things are weightless. Indeed, they had
seen pictures of astronauts just “floating” around. They had also been told
that there is no air in space, and they put the two (no air and weightless)
together. But they had no first-hand experiences to relate to what they knew
from these external “authorities.”

If we really want to know what students are thinking, we need to ask them
and then be quiet and listen respectfully to what they say. If we are genuinely
interested and do not evaluate, we can learn from our students.

What good is having my students know the quantitative relation or equa-
tion for gravitational force if they lack a qualitative understanding of force
and the concepts related to the nature of gravity and its effects? They should
be able to separate the effects of gravity from the effects of the surrounding
air. Later, they should be able to explain the phenomena of falling bodies,
which requires that they separate the effects of gravity from those of air.
While many physical science books focus on the constancy of gravitational
acceleration, most students know that all things do not fall with the same
acceleration. They know that a rock reaches the floor before a flat sheet of
paper, for example. Not addressing the more common situation of objects
falling differently denies the students’ common experiences and is part of
the reason “school science” may not seem relevant to them. So, we need to
separate the effects of air from those of gravity.

Learning is an active process. We need to acknowledge students’ attempts to
make sense of their experiences and help them confront inconsistencies in
their sense making.

Even more fundamental, I want my students to understand and be able
to apply the concept of force as an interaction between objects in real-life
situations. They should have first-hand experiences that will lead to the
reasonable conclusion that force can be exerted by anything touching an
object, and also that forces can exist as “actions at a distance” (i.e., without
touching the object, forces might be exerted through the mechanisms of
gravity, electrostatic force, and magnetic force).

I also want my students to understand the nature of scientific practice.
They should be able to interpret or explain common phenomena and design
simple experiments to test their ideas. In short, I want them to have the skills
necessary to inquire about the world around them, to ask and answer their
own questions, and to know what questions they need to ask themselves in
the process of thinking about a problematic situation.
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Teachers’ questions can model the sorts of questions students might ask them-
selves when conducting personal inquiry.

Research and best practice suggest that, if we are really clever and care-
ful, students will come more naturally to the conceptual ideas and processes
we want them to learn. Being clever means incorporating what we have
come to understand about how students learn. This chapter describes a
series of activities from which the experience of teachers and researchers
demonstrates students do learn about the meaning of force and about the
nature and processes of science. It also explains how the specific activities
and teaching strategies delineated here relate to what we know from re-
search on how people learn, as reflected in the three guiding principles set
forth in Chapter 1 with regard to students’ prior knowledge, the need to
develop deep understanding, and the development of metacognitive aware-
ness. We attempt to give the reader a sense of what it means to implement
curriculum that supports these principles. It is our hope that researchers will
see that we have built upon their work in designing these activities and
creating the learning environment. We want teachers to get a sense of what
it means to teach in such an environment. We also want readers to get an
idea of what it is like to be a learner.

The following unit could come before one on forces to explain motion
(i.e., Newton’s Laws). By the end of this unit, students should have arrived at
a qualitative understanding of force as applied in contexts involving buoy-
ancy, gravitation, magnetics, and electrostatics. The activities involved are
designed to motivate and develop a sense of the interrelationships between
ideas and events. The expected outcome includes qualitative understanding
of ideas, not necessarily formulas.

THE UNIT: THE NATURE OF GRAVITY AND
ITS EFFECTS

Part A: What Gravity Is Not

Getting the Unit Started: Finding Out About Students’ Initial Ideas

Teachers need to unconditionally respect students’ capacities for learning
complex ideas, and students need to learn to respect the teacher as an
instructional leader. Teachers will need to earn that respect through their
actions as a respectful guide to learning.
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For students to understand the following lessons, we need to establish
some prerequisite knowledge and dispositions during earlier lessons. Stu-
dents will need to understand that measurements of a single quantity may
vary depending on three factors: the object being measured, the instrument
being used, and the person using the instrument. The teacher needs to have
enough experience with the class so that the students are confident that the
class will achieve resolution over time. Thus, this unit comes about a month
or so into the school year. Students need to persevere in learning and trust-
ing that the teacher will help guide them to the big ideas. This should prob-
ably not be the students’ first experience with guided inquiry. While the set
of experiences in Part A below takes a week or more to resolve, prior initial
experiences with guided inquiry may take a class period or two, depending
on the students’ tolerance for ambiguity.

Identifying Preconceptions: What Would Happen If . . . ?

Teachers need to know students’ initial and developing conceptions. Students
need to have their initial ideas brought to a conscious level.

One way to find out about students’ preconceptions for a particular unit
is to ask them to give, in writing, their best answers to one or more ques-
tions related to the unit. At the beginning of this unit on the nature of gravity
and its effects, the teacher poses the following situation and questions asso-
ciated with Figure 11-1.

 - Vacuum inside a bell jar

Scale reading = 10.0 lbs Scale reading = ______lbs

Nature and Effects of Gravity
Diagnostic Question

Glass dome with
air removed

FIGURE 11-1 A diagnostic question to use at the beginning of this unit.
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Nature and Effects of Gravity, Diagnostic Question 1: Predict the scale
reading under the glass dome with air removed.

In the diagram with question 1, we have a large frame
and a big spring scale, similar to what you might see at the
local market. Suppose we put something on the scale and
the scale reading is 10.0 lb. Now suppose we put a large
glass dome over the scale, frame and all, and seal all the
way around the base of the dome. Then, we take a large
vacuum pump and evacuate all the air out from under the
dome. We allow all the air to escape through the pump, so
there is no air left under the glass dome.

What would happen to the scale reading with no air
under the dome? You may not be able to give a really
precise answer, but say what you think would happen to the
scale reading, whether it would increase, decrease, or stay
exactly the same and if you think there will be a change,
about how much? And briefly explain how you decided.

I will not grade you on whether your answer is correct. I
just want to know your ideas about this situation at this
time. We are just at the beginning of the unit. What I care
most about is that you give a good honest best attempt to
answer at this point in time. I know that some of you may be
tempted to say “I don’t know,” but just give your best
answer at this time. I’m pretty sure most all of you can come
up with an answer and, most importantly, some rationale to
support that answer. Just give me your best answer and
reasoning at this point in time. We will be working to
investigate this question over the next few days.

When asked, more than half of students cite answers that suggest they
believe air only presses down. Half of those suggest that the scale reading
would go to zero in the vacuous environment. About a third of introductory
students believe that the surrounding air has absolutely no effect on the
scale reading regardless of the precision of the scale. Most of the rest believe
that air only pushes up on the object and that it does so with a strong force.
Typically, only about one student in a class will suggest that the air pushes
up and down but with slightly greater force in the upward direction, the
result being a very slight increase in the scale reading for the vacuous envi-
ronment—a “best answer” at this time.

This question may be more about understanding buoyancy than under-
standing gravity. However, part of understanding the effects of gravity is
learning what effects are not due to gravity.

Students need opportunities to explore the relationships among ideas.
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Gravitational force is an interaction between any two objects that have
mass. In this case, the gravitational force is an interaction between the object
on the scale and the earth as the other object. Many students believe gravity
is an interaction between the object and the surrounding air. Thus, this has
become a first preconception to address in instruction. If teachers fail to
address this idea, we know from experience that students will likely not
change their basic conceptual understanding, and teachers will obtain the
poor results described earlier.

In contrast with the above question, we have seen curricula that attempt
to identify students’ preconceptions simply by asking students to write down
what they know about X. In our experience, this question is so generic that
students tend not to pay much attention to it and simply “do the assignment”
by writing anything. Instead, preinstruction questions should be more spe-
cific to a context, but open up the issues of the discipline as related to that
context. These sorts of questions are not easy to create and typically evolve
out of several iterations of teaching a unit and finding out through discus-
sions what situations elicit the more interesting responses with respect to the
content at hand.

A Benchmark Lesson1: Weighing in a Vacuum

In discussion following the posing of this question, I encourage stu-
dents to share their answers and rationales. Because I am interested in get-
ting students’ thinking out in the open, I ask that other students not com-
ment or offer counter arguments at this point, but just listen to the speaker’s
argument. I, in turn, listen carefully to the sorts of thinking exhibited by the
students. I know this will faciliate my helping the class move forward later.

With encouragement and support on my part, some students volunteer
to share their answers. Some suggest the scale will go to zero “with no air to
hold the object down.” Others suggest, “The scale reading will not go to
zero but will go down some because gravity is still down and the weight of
the air pushes down too, but since air doesn’t weigh very much, the down-
ward air won’t be down much and the scale reading won’t go down much.”
Some students suggest that the scale reading will increase (slightly or sub-
stantially) “because there is no air to hold the object up. It’s about buoyancy.
The air is like water. Water pushes up and so does air. No air, there is no
buoyancy.” Still others suggest that the scale reading should stay the same
“because air doesn’t do anything. The weight is by gravity not by air pres-
sure.” And others agree that the scale reading will not change, “but air is
pushing on the object. It pushes up and down equally on the object, so
there shouldn’t be any change.” By now several students have usually chimed
in to say that one or another of the ideas made sense to them. The ideas are
now “owned” by several class members, so we can discuss and even criti-
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cize the ideas without criticizing a particular person. It is important to be
supportive of free expression of ideas while at the same time being critical
of ideas.

Students are more likely to share their thinking in a climate where others
express genuine interest in what they have to say. Waiting until one student
has completely expressed his or her idea fosters deeper thinking on that
speaker’s part. Asking speakers critical questions to clarify what they are
saying or to help them give more complete answers and explanations fosters
their own engagement and learning.

With most of their initial thinking having been expressed, I encourage
students to share potentially contradictory arguments in light of the candi-
date explanations. Students might suggest, “When they vacuum pack pea-
nuts, they take the air away and the weight doesn’t go to zero”; or “The
weight of the column of air above an object pushes down on the object”; or
“Air acts like water and when you lift a rock in water it seems lighter than
lifting it out of water, so air would help hold the object up”; or “But, I read
where being on the bottom of the ocean is like having an elephant standing
on your head, so air must push down if it acts like water”; or “Air is just
around things. It doesn’t push on things at all, unless there is a wind.” Some
students begin to say they are getting more confused, for many of these
observations and arguments sound good and reasonable.

Once arguments pro and con for most of the ideas have been expressed,
it is time to begin resolving issues. Thus far, we have been freely expressing
ideas, but I want students to know that science is not based simply on
opinion. We can achieve some resolution by appealing to nature; indeed,
our inferences should be consistent with our observations of nature. I ask,
“Sounds like a lot of good arguments and experiences suggested here, so
how can we get an answer? Should we just vote on which should be the
right answer and explanation?” Typically, several of the students suggest,
“No, we can try it and see what happens. Do you have one of those vacuum
things? Can we do the experiment?”

I just happen to have a bell jar and vacuum pump set up in the back
room. First, I briefly demonstrate what happens when a slightly inflated
balloon (about 2 inches in diameter) is placed under the bell jar and the
pump is turned on: the balloon gets larger. I ask the students to explain this
result. The students (high school age at least) usually are able to articulate
that I did not add air to the balloon, but the air outside the balloon (within
the bell jar) was evacuated, so the air in the balloon was freer to expand the
balloon.
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Attention is extremely important to learning.

We hang a weight on the spring scale, put it under the jar, and seal the
edges, and I ask students to “place their bets.” This keeps students moti-
vated and engaged. “How many think the scale reading will increase?” Hands
go up. “Decrease?” Many hands go up. “Decrease to zero?” A few hands go
up. “Stay exactly the same?” Several hands go up. I start the pump.

It is important to give students opportunities to apply (without being told, if
possible) ideas learned earlier.

The result surprises many students. The scale reading does not appear
to change at all. Some students give a high five. I ask, “What can we con-
clude about the effects of air on the scale reading?” Some students suggest,
“Air doesn’t do anything.” Sometimes to get past this response, I need to
prime the discussion of implications of the results by asking, “Do we know
air has absolutely no effect?” A few students are quick to say, “We don’t
know that it has absolutely no effect. We just know it doesn’t have enough
effect to make a difference.” I ask, “Why do you say that?” They respond,
“Remember about measurements, there is always some plus or minus to it. It
could be a tiny bit more than it was. It could be a tiny bit less, or it might be
exactly the same. We can’t tell for sure. Maybe if we had a really, really
accurate scale we could tell.”

I also want the students to see that conclusions are different from
results, so I often guide them carefully to discuss each. “First, what were
the actual results of the experiment? What did happen? What did we
observe?” Students agree that there was no observable change in the
scale reading. “Those were the results. We observed no apparent change
in the scale reading.”

Students should be provided opportunities to differentiate between summariz-
ing observable results and the conclusions generalized from those results.

Because I want students to understand the role of experimentation in
science, I press them for a conclusion: “So, what do we know from this
experiment? Did we learn anything?” Although a few students suggest, “We
didn’t learn anything,” others are quick to point out, “There can’t be any big
changes. We know that the air doesn’t have a big effect.” At this point, it
appears students have had sufficient experience talking about the ideas, so
I may try to clarify the distinction between results and conclusions: “Conclu-
sions are different from results. Conclusions are about the meaning of the
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results, about making sense of what we observed. So, what can we con-
clude? What do these results tell us about the effects of the air?” With some
additional discussion among the students, and possibly some additional clari-
fication of the difference between results and conclusions, most students are
ready to believe the following summary of their comments: “If the air has
any effect on the scale reading, it is not very large. And apparently gravity is
not caused by air pressure pressing things down.”

Activity A1

Activity A1 is a simple worksheet asking students to review their an-
swers to questions about their initial ideas, other ideas that have come out in
discussion, and the results and conclusions from the preceding benchmark
lesson. Typically, I hand this summary sheet out as homework and collect it
at the beginning of the next class. By reviewing what students have written,
I can identify related issues that need to be discussed further with certain
students. Alternatively, I may ask students to check and discuss their an-
swers with each other in groups and to add a page of corrections to their
own answers before handing in their original responses. One purpose of
this activity is to encourage students to monitor their own learning.

Students need opportunities to learn to monitor their own learning.

Progressing from the preinstruction question through the benchmark
discussion takes about one class period. In showing that gravity is not caused
by air pressure, we have generated questions about the effects of the sur-
rounding air. Students now want to know the answer to the original ques-
tion. I used to end the investigations of the surrounding air at this point and
move on to investigating factors affecting gravity, but I discovered that stu-
dents slipped back to believing that air pressed only down or only up.
Therefore, we redesigned the curriculum activities to include more time for
investigation into the effects of surrounding fluids. Doing so also allows us
to incorporate some critical introductory experiences with qualitative ideas
about forces on objects. This experience helps lay the groundwork for the
later unit on forces, when we will revisit these ideas and experiences. To
deepen students’ understanding of the effects of surrounding fluids then, we
now engage in several elaboration activities wherein students have opportu-
nities to test various hypotheses that came up in the benchmark discussion.

Revisiting ideas in new contexts helps organize them in a rich conceptual
framework and facilitates application across contexts.
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Opportunities for Students to Suggest and Test Related Hypotheses

In the benchmark lesson, several ideas were raised that need further
testing. Some students suggested air only pushed up, others that air only
pushed down, still others that air pushed equally or did not push at all.
Some suggested that air was like water; others contested that idea. Each of
the following activities is intended to give students opportunities to test
these ideas in several contexts, recognizable from their everyday world.
That is, each activity could easily be repeated at home; in fact, some stu-
dents may have already done them. One goal of my class is for students to
leave seeing the world differently. Groups of three or four students each are
assigned to “major” in one of the elaboration activities and then to get around
also to investigating each of the other activities more briefly. In every case,
they are asked to keep the original bell jar experiment in mind: “How does
this activity help us understand the bell jar situation?” With respect to the
activity in which they are majoring, they will also be expected to present
their results and conclusions to the class.

Elaboration Activity A2: The Inverted Glass of Water. This activity was
derived from a trick sometimes done at parties. A glass of water with a
plastic card over the opening is inverted. If this is done carefully, the water
stays in the glass. Students are asked to do the activity and see what they can
learn about the directions in which air and water can push. They are also
given the opportunity to explore the system and see what else they can
learn.

Allowing students freedom to explore may give teachers opportunities to
learn. Teachers need to allow themselves to learn.

My purpose here is to help students see that air can apparently push
upward (on the card) sufficiently to support the card and the water. That is
usually one conclusion reached by some students. Early in my use of the
activity, however, I was surprised by a student who emptied the water and
placed the card over the open end of the inverted glass and concluded, “It’s
the stickiness of water that holds the card to the glass.” For a moment I was
taken aback, but fortunately other students came to my rescue. They said,
“At first we thought it might be because the card just stuck to the wet glass,
but then we loaded the card with pennies to see how many pennies the card
would hold to the empty glass. We found it would only hold about three
pennies before the card would drop off. The water we had in the glass
weighs a lot more than three pennies. Stickiness might help, but it is not the
main reason the card stays on. The main reason must be the air below the
card.”
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This was such a nice example of suggesting and testing alternative ex-
planations that I now bring up the possibility of the stickiness being all that
is needed if this idea does not come up in the group presentation. More
recently, other students have tested the stickiness hypothesis by using a
rigid plastic glass with a tiny (~1 mm) hole in the bottom. When they fill the
glass, put on the card, and invert the glass, they put their finger over the
hole. When they move their finger off the hole, the water and card fall. They
conclude that the air rushing in the hole pushes down on the water and that
the air pushing from under the card is not providing sufficient support. I
now make sure I have plastic cups available in case I need to “seed” the
discussion.

After making these observations, students are ready to draw the tenta-
tive conclusion that the upward push by the air on the card must be what is
supporting most of the weight of the water on the card. They note the water
must push down on the card, and since the stickiness of the water is not
enough to hold the card, there must be a big push up by the air. This
conclusion is reached more easily by more mature students than by middle-
level students. The latter need help making sense of this argument. Most are
willing to say tentatively that it makes sense that the air pushes up and are
more convinced after they see the various directions in which air pushes in
the other activities.

Elaboration Activity A3: Inverted Cylinder in a Cylinder of Water. This
activity was derived from some students describing observations they had
made while hand-washing dishes. They had observed what happened when
an inverted glass was submerged in a dishpan of water. In activity A3, a
narrow cylinder (e.g., 100 ml graduated cylinder) is inverted and floated in a
larger cylinder (e.g., 500 ml graduated cylinder) of water. Again, students are
asked to see what they can learn about the directions that air and water can
push.

I want students to see that air and water can push up and down, and
that the deeper one goes in a fluid, the greater is the push in any direction.
While doing this activity, students observe that the farther down one pushes
the floating cylinder, the more difficult it is to push. Thus, they conclude that
the water is pushing upward on the air in the small cylinder, and the push is
greater the deeper one goes. Typically, some students cite as additional
evidence the observation that the water level in the small cylinder rises
within that cylinder the farther down one pushes the small cylinder, thus
compressing the air. I commend these students for their careful observation
and suggest that other students observe what happens to the level of the
water in the inner cylinder. The more the air is compressed, the harder the
water must be pushing upward on the air to compress it, and the more the
compressed air must be pushing upward on the inside of the small cylinder.
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The students appear to have reached the conclusions I hoped for. Although
I primed them with relevant questions, they made the observations and
reached the conclusions.

Elaboration Activity A4: Leaky Bottle. This activity, like the others, came
from experiences students had suggested helped them with their thinking
about fluids. A 2-liter plastic soda bottle with three holes in it at three differ-
ent heights is filled to the top with water and allowed to leak into a basin.
Again, students are asked to see what they can learn about the directions in
which air and water can push.

By listening to students’ arguments, the teacher can learn what related
experiences make sense to them.

Here I want students to learn that air and water can push sideways as
well as up and down and again, that the push of air and water is greater the
deeper one goes. “Suppose there is a tiny drop of water at this opening. In
what direction would the air push on it? In what direction would the water
in the container push on the droplet?” With some guidance to think about
the directions in which air and water push on a tiny droplet right in the
opening of one of the holes, the students conclude that the inside water
must be pushing outward (sideways) on the droplet, since the droplet comes
out. They also observe that the water comes out with different trajectories at
the three different-elevation holes. They again see this as evidence that the
deeper one goes, the greater is the push by the fluid, in this case sideways.
I see some students capping the bottle and observing air going in (bubbles
rising) the top hole while water is coming out the lower holes. They con-
clude that at the top hole, the outside air must push the hypothetical droplet
into the water since that is the direction the air goes. Thus, they see that air
and water can push sideways and that pressure is greater with depth.

Elaboration Activity A5: Water and Air in a Straw. I think most parents
have been embarrassed by their children doing something like this activity
while out to dinner. Students place a straw a few centimeters into a con-
tainer of water and put a finger over the upper end of the straw before
withdrawing the straw from the water. Typically, this results in a bit of air in
the upper part of the straw and a few milliliters of water staying in the
bottom part of the straw. Students are invited to explain.

In science, we strive for the simplest hypothesis necessary to explain the
phenomenon.
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Observing that the water stays in the straw, some students conclude that
the air below the straw helps support the water. Other students may suggest
that the air or vacuum above the water may be “sucking” the water up, an
alternative hypothesis. This latter hypothesis is probably cued by the situa-
tion because virtually all of these students have experienced sucking on a
straw to get liquid to rise. Other students counter by turning the straw over
while keeping their finger over the one end, now the bottom end. This
leaves the water in what is now the top of the straw, with air in the straw
below the water. One student suggests, “The air in the straw is now holding
up the water. But, see how the water at the end of the straw now goes down
a bit into the straw. That means the weight of the water is causing the air in
the straw to be compressed slightly, and if we take our finger away, the air
in the straw goes out and the water falls because it is not supported.” Other
students chime in with their experiment of making two bits of water in the
straw with a bit of air between them. They have a bubble of air in the
bottom of the straw with a bit of water next, then a bubble of air, and finally
more water in the top of the straw. These students argue that the middle
bubble of air is both pushing up on the bit of water above and pushing
down on the bit of water below. The sucking hypothesis, although not
completely eradicated, seems less necessary. Thus, most students come to
the conclusion that air can push up and down at the same time.

The first time I tried these activities, I had planned them as a “circus
lab.” After about 10 minutes, I told students to move on to the next station.
Most students stayed where they were. It was 40 minutes before I could get
the three girls at the straw station to give it up. I now allow students to major
in one activity and visit the others. They get engaged in these simple, com-
mon activities, and challenged, they need time to come up with and test
explanatory ideas. So I now plan for students to have two class periods in
which to complete their major activity, briefly visit each of the other activi-
ties, and prepare to present their findings to the class. Toward the end of the
second period, we may begin class presentations.

On a third day, we finish the presentations and have a class discussion
about what we learned. We summarize the similarities and differences in the
properties of air and water. Virtually all students now agree that air and
water can push up and down and sideways, that is, can push in all direc-
tions. Virtually all agree that the deeper one goes in water, the greater is the
push in all directions. There is not quite the same strength of agreement that
the push by air is greater the deeper one goes. But usually some students
will note that the higher one goes up a mountain, the lower is the air pres-
sure. Other students agree with this observation and add their own, such as
that this is why airplanes are pressurized. So, they argue, air and water have
many similar properties. Students now have sufficient background for me to
introduce the technical term “fluid” properties. Both air and water are fluids.
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They can exert pressures in all directions, and they appear to have this
increase in pressure with depth.

After students have had experiences and come up with ideas to summarize
those experiences, it makes sense to introduce a technical term for ease of
communication.

What are the differences? With some guidance, students suggest that air
is “squishable” and water is not. They know that water is denser, heavier for
the same volume, for we studied density earlier in the year. Students also
may talk about the stickiness of water to itself and to other things, like the
containers it is in. Since the students have summarized the ideas, I can now
introduce the technical terms “cohesion” and “adhesion.” Now they are ready
for another elaboration activity that more closely approximates the initial
benchmark activity.

Elaboration Activity A6: “Weighing” an Object in a Fluid Medium. In
this activity, I weigh a solid cylinder suspended by a string and ask, “What
will happen to the scale reading if I attempt to weigh this object while it is
under water?” Virtually all students suggest the scale reading will be lower
than when the object is weighed out of the water. They are given an oppor-
tunity to test their predictions and are then encouraged to explain the
results.

When complex explanations involving several factors are needed for their
reasoning, students need more time to put the pieces together.

The scale reading is lower. Some students conclude that the water is
pushing up by an amount that is the difference between what the object
weighed when out of the water and when in the water. Note, however, that
this is going back to the conclusion that water pushes up, with no mention
of any downward push. Many textbooks let students off the hook at this
point: “This upward force by the water is called the buoyant force.” But this
prevents a deeper, more useful understanding involving the resolution of
the up and down forces, so I press for more: “Tell me about the pushes by
the water on this solid, metal cylinder.” Several students jump in with claims
based on their previous experiences. They introduce their earlier conclusion
that the water is pushing on the top and sides as well as on the bottom. I
probe for more: “In what directions are those pushes?” Now students are
even more eager to apply the ideas that have emerged in the last few days.
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A few students say, “The water on top pushes down.” Several others add,
“The water below pushes up. The water on the sides pushes sideways.”

I now ask, “So, how do we explain the observation that the scale read-
ing is less?” Several students are now constructing an explanation. I give
them a few minutes to work on their explanations in small groups and then
ask them to share their conclusions: “The water pushes up and the water
pushes down. But the push up is greater than the push down, ‘cuz it is
deeper.” Some students have it, but others are still struggling. If students do
not volunteer consideration of the comparison between the pushes, I may
ask the question, “Why should the push from below be larger? Why does
that make sense?” Several students respond, “Because the deeper we go the
bigger the push.”

At this point, several students have represented the application of our
recently derived ideas with words. In the interest of deepening the under-
standing for all students, I suggest they represent the situation with pictures,
using arrows to show the directions of the forces and varying the lengths of
the arrows to show the magnitude (size) of the forces. I ask each group to
take white board and a marking pen and draw such a picture of the sub-
merged metal cylinder. After a few minutes, we compare diagrams and have
members of each group describe their drawings and explain the situation.
By now, nearly all the groups have drawn the cylinder with a larger arrow
up than down. Each of these arrows, they say, represents the size and direc-
tion of the push by the water on that part of the cylinder.

Building an Analogy to Understand the Benchmark Experience

Now that it appears the students understand the weighing-in-water situ-
ation, I direct them back to the weighing-in-a-vacuum situation. “So, what
does all of this tell us about the situation of weighing under the bell jar? If we
had a really accurate instrument, what do you think would have happened
to the scale reading and why?” A few students begin to construct an analogy:
“Weighing in air would be like the weighing in water.” I ask, “How so?” One
student responds, “The air around the world is kind of like an ocean of air.
Down here is like being deep in the ocean of air. On a mountain air doesn’t
press as hard.” Another adds, “Air can push in all directions, just like water.
So if water can push up and down on the cylinder, so can air.” “But air
doesn’t push as much [hard], so you don’t get as big a difference,” says
another. With some guidance from me, the students build an analogy: “Weigh-
ing in the water is to weighing out of the water (in air) as weighing in the
ocean of air is to weighing out of the air, that is in a vacuum.” I ask, “So what
would happen to the scale reading in the vacuum if we had a very accurate
instrument?” One student responds, “The scale reading would be more.”
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Another adds, “Just like the scale is more when we take the thing out of the
water.”

Building an analogy from a situation students understand to one they do not
can build understanding of the new situation.

Consensus Discussion and Summary of Learning

There are expectations for what students should have learned from the
curricular activities performed thus far. Up to this point, I have been at-
tempting to identify students’ understandings about the pushes of the sur-
rounding fluid (water or air). In the class, I now guide a discussion aimed at
achieving consensus on what we can conclude about water and air from
our observations. On the topical content side, learners should know the
following:

• Water and air have some similar properties.
— Fluids (at least water and air) can push in all directions, up, down,

sideways.
— The deeper one goes in the fluid, the greater is the push in any

direction.
• Water and air have some different properties.

—Since water is denser than air, the effects of the pushes by water
are greater.

—Water can stick to itself (cohesion).
—Water can stick to other materials and things (adhesion).
—Air is more squishable (compressable) than water.

The learners should have evidence (results) from the class experiences that
they can use to support each of these conclusions.

Students need opportunities to reflect on and summarize what they have
learned.

Learners also have had an opportunity to practice some habits of mind
that are consistent with learning and reasoning in science:

• Inferences come from observations (evidence-based reasoning).
• Controlled experiments can be used to test most of our ideas.
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• Dialogue in science means questioning for clarity of observations,
ideas, and explanations.

• Dialogue in science means being supportive and encouraging to elicit
the ideas of others while at the same time asking critical questions,
such as “How do you know?”

• If we persevere, we will likely be able to understand complex
situations.

Students need opportunities to monitor their own learning.

If habits of reasoning and action are also among our learning goals, we need
to make them as explicit as we make our content goals.

Diagnostic Assessment

At some point after the benchmark lesson and the more focused elabo-
ration lessons, and after the class has begun to develop tentative resolutions
for some of the issues raised, it is useful to give students the opportunity to
check their understanding and reasoning individually. Although I sometimes
administer these questions on paper in large-group format, I prefer to allow
the students to quiz themselves when they feel ready to do so. They think
they understand, but they need opportunities to check and tune their under-
standing. To address this need for ongoing formative assessment, I use a
computerized tool2  that assists the teacher in individualizing the assessment
and keeping records on student progress. When students feel they are ready,
they are encouraged to work through computer-presented questions and
problem appropriate to the unit being studied.

Typical questions related to the key ideas of the preceding activities
might juxtapose three situations involving weighing a solid object—the solid
object in air, in water, and in a vacuum—each object suspended from a
string attached to a spring scale. A first question checks on the students’
recall of the specific results obtained and asks them to put the expected
scale readings in order assuming the scale has the precision needed. A sec-
ond question checks on the students’ reasoning: “What reasoning best justi-
fies the answer you chose?” For this question, I look for responses that
suggest “the water pushes up,” “the air pushes down,” or “air has no effect
on scale readings.” Have the students fallen back into their preconceptions,
or have they made the desired progress?

Other questions extend the students’ application of the ideas to new
contexts: “Using the ideas of pushes by air and water, explain how the
squeezable plant watering container (with the long curved ‘straw’ on top)
works.” Another question suggests a special room wherein the air pressure
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can be increased from normal to much higher: “What would happen to the
scale reading and why?” Another asks students to predict what would hap-
pen to a scale reading if we attempted to weigh the solid object in alcohol,
which is less dense than water but more dense than air.

Assessment should help the teacher monitor whether students are still
operating on the basis of preconceptions, as well as whether they have
attained the learning goal(s).

For all these questions, I look for evidence to determine whether the
students’ ideas have changed or they are still showing evidence of believing
their original idea that fluids only push up or down or that the weight is
proportional to air pressure. Thus, I aim to move students’ understanding
across the gap from their preconceptions to a more scientific understanding.
The assessment allows them to monitor their learning. If there is trouble,
they get feedback suggesting they rethink their answer and/or reasoning in
light of the class experiences. I thus obtain a report of what sort of problem-
atic thinking students have exhibited and what experiences might help them
move farther across the learning gap.

Part B: What Is Gravitational Attraction?

Exploring Similarities and Differences Between Actions at a
Distance

In the previous subunit (Part A) the class separated the effects of the
surrounding medium from the effects of gravity on static objects. We appear
to have taken a bit of a detour into understanding more about the effects of
air and water and other fluids on objects submerged in the fluid. Later we
will need to return to looking at the effects of the surrounding fluid when
we explore falling bodies (Parts C and D). First, however, we explore the
concept of “action at a distance,” a key notion in understanding gravity.

Students should be able to see science as involving many questions as yet
unanswered.

Although there are still many unanswered questions about gravity, the
students do know a great deal about what it does and about the variables on
which the strength of the gravity force depends. In Part B, now that the
students know about some effects that are not due to gravity, we explore
some of the effects that are. Because many effects of gravity are so subtle
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and pervasive (we live and deal with them every day), the students need to
explore gravity by comparing and contrasting its effects with some similar
effects and causes they can investigate first-hand.

Research has shown that many students do not separate gravitational
effects from magnetic or electrostatic effects. But the effects are similar in
that they are all “actions at a distance”; that is, one object can affect another
without touching it. Actions at a distance can act through materials and even
across empty space. The first activity (B1) in this subunit is to construct
analogies among the various actions at a distance. The goal is for students to
see that the situations are similar, but the properties of the objects or mate-
rials on which the influencing objects act are different.

Benchmark Lesson: Making a Torsion Bar Do the Twist

In the classroom, several meter sticks are hanging from their center
points from strings attached to the ceiling. They should be hanging so that
each meter stick is horizontal and free to rotate horizontally. On the two
ends of one meter stick are hanging two identical brass spheres. From the
ends of another hang two aluminum spheres, from another two wooden
spheres, from another two steel spheres, and from another two foam spheres.
Each system should hang fairly still with the meter stick horizontal (though
this is sometimes difficult with students moving around the room). Each is
arranged to be what is called a “torsion balance” or “torsion bar.” The word
“torsion” comes from “torque,” which means twist. So, we are going to see
whether these bars can be made to twist by bringing something near the
objects hanging from the ends without touching the objects (see Figure
11-2). Care must be taken not to bump or even touch the bars except to
adjust them to remain still at first. Note that, depending on the maturity and
coordination of the students, it will likely be necessary to set up and run the
experiment as a demonstration after students have made their predictions
individually. Some teachers have found that it helps keep the torsion bars
still if movement of students around the room is limited, and even the

FIGURE 11-2 Torsion bar, spheres,
and influencing material.
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heating/cooling fan for the room is turned off and windows and doors
closed. Even quick hand motions near these delicate balances will cause
them to move—possible air effects again. Now the problem:

Suppose one end of a magnet is very slowly brought
near (but not touching) a sphere on one end of each torsion
bar. (Notice that there is a similar situation on the other end
of the torsion bar. We will be discussing mainly what
happens at one end of the bar, but because of symmetry we
can generalize the effect to both ends.)

1. Predict what the torsion bar will do in each case.
If you think the bar will twist, tell whether it will go toward
or away from the magnet.
When brought near the brass sphere the bar will
_______________.
When brought near the aluminum sphere the bar will
__________________.
When brought near the wooden sphere the bar will
____________________.
When brought near the steel sphere the bar will
____________________.
When brought near the foam sphere the bar will
_________________.

2. Briefly explain how you decided which will twist and in
what direction.

If any will not twist, tell why you think they will not.

To keep students thinking, teachers should not give answers but present
opportunities for students to test their answers.

While students are answering the questions individually, I circulate around
the room, making sure that they understand the questions and that I am
getting a feeling for the sorts of answers and thinking I will hear during the
discussion. When it appears most students have finished answering and
explaining, I ask them to share their predictions and explanations with oth-
ers. One student suggests, “I think all the metal ones will move because
metal is attracted to magnets.” I ask whether that makes sense to others, and
most of the class appears to agree. Another student says he has tried this
before and only “silverish” metal things get attracted, not things like gold
rings. Another says, “Not all silver things are attracted, ‘cuz I’ve tried to pick
up money, and magnets don’t pick up quarters, nickels, or dimes.” A few
others agree. After only a few minutes of this discussion, students are ready
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to see what happens. So I carefully and slowly bring the magnet near one of
the spheres in first one situation and then another until we have tried them
all. While doing this, I suggest that the students write down the results of
each situation. The results are that only the steel sphere is attracted to the
magnet, and none of the others are affected.

In this case, because the students typically know little about various
kinds of metals and their properties and because I do not want to lose the
focus on actions at a distance, I elect to tell the students about the metals
that are attracted to magnets. I suggest that, while most materials have some
magnetic properties, only metals containing iron readily show the effects
with magnets such as those we are using.

Preinstruction assessment should check for specific preconceptions.

Next I bring out a styrofoam cup that I have been careful to leave in my
desk for several days, so it likely will not be electrostatically charged. I ask
the students to predict whether the cup will affect any of the spheres on the
torsion balances. There are no clear patterns of prediction. Most students
appear to be just trying to guess. I immediately show them what happens:
the foam cup does not affect any of the objects (unless the spheres them-
selves happen to have become charged electrically).

In guided inquiry, the teacher needs to monitor class ideas as they exist
initially and as they develop.

Then I rub the cup across my hair a couple of times and ask the students
what they expect will happen now. Some students say they think the cup
will attract the steel “because you magnetized the cup.” Others say no, that
the cup now has “electrical charge,” so it will attract all the metal pieces
because “metal conducts electricity.” Still others say, “Because the metals
conduct the charge away, they won’t be affected.” Again, given the confu-
sion and, in some cases, lack of experience with the phenomena, it is time
to move quickly to doing the experiments. So I bring the charged cup near
each sphere. The results are that every sphere is attracted to the cup. One
student facetiously suggests, “That’s static cling.” For now we conclude that
all materials are attracted to an object that has been electrostatically charged.
In later investigations of electrostatics, I want students to see that there are
two kinds of electrostatic charge and the neutral condition, but I elect not to
encourage that investigation at this time so we can keep building the action-
at-a-distance story.



496 HOW STUDENTS LEARN: SCIENCE IN THE CLASSROOM

Next, I “cuddle” the cup in my hands. By gently putting my hands all
over the cup and breathing warm, moist air on it, I am discharging it. When
I am pretty sure it has been discharged, when I see that it will not pick up a
tiny scrap of paper, I go through the test of bringing the cup near but not
touching each sphere again, and we find that there is no effect on any of the
spheres. (Note that this part of the lesson is tricky, and it takes practice to
make sure the cup is no longer charged.) So I cuddle the magnet as well, but
it still attracts the steel sphere and no others. I rub the magnet across my hair
and test it, again with no effect except with the steel sphere.

Students need opportunities to summarize the big ideas that have been
developed by the class.

It is now time to have students summarize and build consensus. Mag-
nets attract steel pieces without touching them, but do not affect any other
materials that we can readily see. And the magnet effect cannot be cuddled
off. Static-charged foam cups (and other things such as plastic rulers and
inflated latex balloons) attract all kinds of materials without touching them,
but the charge can be cuddled off. Thus magnets and static-charged objects
are similar in that they both influence other things without touching them,
and I suggest this is called “action at a distance.” I continue to point out that
the two phenomena are apparently different kinds of action at a distance,
since they affect different kinds of material. Magnets affect materials that
contain iron, but static-charged things can affect almost anything made out
of almost any material. Finally, the electrical charge can be cuddled off, but
the magnetic effect cannot.

Technical media can be used to enhance or extend the students’ experience.

What about gravity? It also acts without touching. The students have
heard slogans about gravity making things fall here on earth, holding the
moon in orbit, and holding the planets in orbit around the sun, but how can
I make that abstraction real for them? What does gravity affect? Can it be
cuddled away?

Thinking needs to be challenged whenever passive media are used.

I show a piece of film that demonstrates a torsion balance experiment
similar to what we have been observing during the first half of the class
period. In the film, a meter stick is again used as the torsion bar. In this case,
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quart milk bottles are hung from each end of the bar and adjusted until the
bar is horizontal and remaining still. Then a large cardboard box of sand is
pulled close (but not touching) to one side of one bottle, and another box of
sand is pulled to the other side of the balance but near the other bottle of
water (see Figure 11-3). To help students understand the film, I stop it and
simulate the situation in one corner of the classroom with bottles and boxes.
Then the students watch the film as the bar slowly twists such that the
bottles get closer to the boxes. Because the effect is so unbelievable to
students and because an indirect measure of the movement of the bar is
used in the film, I talk the students through the procedure, the results, and
the final conclusion:

Teacher Do you understand the procedure? How is it
like the procedure we used for the
magnet situation and the electric charge
situation?

Student 1 There are things hanging from the stick in all
of ‘em.

Student 2 The stick could turn if something made it turn,
like a magnet or rubbed foam cup.

Teacher What is brought into this situation like the
magnet or the charged cup?

Student 3 A box of sand?

Student 4 Two boxes of sand.

Teacher So is there an effect here?

Student 3 No, it is not like the magnet, a box of sand
can’t cause the bottle to move.

FIGURE 11-3 Experiment illustrating gravitational torsion balance.
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Teachers can foster students’ thinking by asking questions, by reflecting
students’ comments back to them, and by avoiding expressing judgments
about whether those comments are right or wrong.

[Partly because students do not believe there
should be an effect, and partly because the
film uses a subtle way of detecting the move-
ment, most students fail to see the movement
at first. I tape a small piece of mirror to the
middle of the meter stick with the bottles and
shine a flashlight on the mirror. This is also
done in the film. A spot of reflected light hits
the wall over my shoulder.]

One goal of inquiry-based teaching is to get students to be the ones asking
the questions and challenging or bringing up apparently conflicting
observations.

Teacher What would happen to the spot of light if the
meter stick twisted?

Student 5 The spot would move. It’s like when the light
hits my watch and makes a spot and then I
move my wrist and make the spot hit some-
body in the face. [some laughter]

Teacher Yes, good example, although it might be
distracting, so please don’t do it in class. In the
film they were shining a light on the mirror in
the center of the meter stick. What happened
to the light?

Student 5 It moved.

Student 6 Yeah. The light went first one way, then the
other.

Student 2 But that would mean that something like a
magnet made the stick turn.

Student 4 The box of sand pulled on the bottle of water
and made the stick turn.

Student 7 No way, Jose! [laughter] Sand can’t pull on
water.

Student 3 Yeah maybe they had a magnet or foam cup or
something to do it.

Teacher Good question, lets see how they address that
in the film.
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[I run the film through the part where they
show the effect is not an electrical one, and the
voice of the physicist on the film concludes
that the bottles moved because of the gravita-
tional attraction between the sand-filled boxes
and the bottles of water.]

Student 3 But, how come we can’t see that [gravitational
attraction] here with our stuff?

Teacher Another good question. The gravitational
effect of a box of sand on a bottle of water is
so weak that it requires a very delicate setup.
Although Sir Isaac Newton, in 1687, suggested
every object in the universe pulled on every
other object in the universe, it really wasn’t
until about a hundred years later that another
scientist named Henry Cavendish built a very
sensitive torsion balance and was able to see
evidence of gravitational attraction happening
with ordinary things in a laboratory.

Providing some information from the history of science can help give students
perspective on human involvement in the development of ideas.

[When I was at the university I had a chance to
repeat Cavendish’s experiment. The equipment
was so delicate that when a truck went by the
building I was in, we had to start the experi-
ment over again. It made the equipment shake,
even though we could not even feel or hear the
truck. Note that in the film, the experiment is
conducted in a mostly vacant building, and the
torsion bar is hung from the rafters.]

Teacher OK, so this was about the best I could do to
show you that any thing that has mass will pull
on any and every other thing that has mass.
This is part of Newton’s law of universal
gravitation. Even ordinary things like boxes of
sand and bottles of water exert a gravitational
pull on each other, and they do it without
touching each other. Gravity is also an action
at a distance. Can we rub it off? No, not unless
we could get rid of the mass. But, then we
would have nothing, because everything has
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mass. Let’s summarize in a table [which I write
on the board and encourage them to record in
their notes for the day].

Teacher So remember these three different sets of

Three different kinds of action at a distance:

Magnetism Acts at a Acts mostly on Can’t be cuddled
distance iron things away easily

Static Acts at a Acts on anything
electricity distance (charged or neutral) Can be cuddled away

Gravity Acts at a Acts on anything Can’t be cuddled
distance (with mass) away at all

circumstances associated with three different
forces that can all act at a distance, even
across empty space. We conclude that they all
three are “actions at a distance,” but they act
on different materials. Some we can make
come and go under certain circumstances
(e.g., cuddling, and I will end class with
changing a magnet). So far we have no way of
making the gravity go away. And we have
some evidence that you might encounter in
later classes that gravity is the force that holds
planets in their orbits and makes dust and
gases in the universe come together to form
stars.

If students have had sufficient first-hand experience, short lectures can make
sense even to young students.

Mainly for fun and motivation, I show the students that if I beat on an
iron bar with a hammer while holding the bar parallel to the earth’s mag-
netic field, I can cause the bar to become a magnet. For fun, I have them
chant as I beat on the bar: [bang bang] “uwa,” [bang bang] “tafu,” [bang
bang] “yiyam.” As I beat the pairs of hits faster and faster, the chant begins to
sound more and more like “ohwhat afool Iam.” The bell rings, and the
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students leave laughing and agreeing with the chant. That concludes the
main lesson showing the various types of actions at a distance.

Humor can enliven the learning experience and help build positive relation-
ships between students and teachers.

Factors on Which the Magnitude (Size) of Gravitational Force
Depends

The purpose of the next series of lessons is to build a case for students
to believe that the magnitude (size) of the gravitational force grows as each
of the two interacting masses becomes larger, and that the greater the sepa-
ration distance between the two masses, the smaller is the gravitational force
that each exerts on the other. High school physics students and more math-
ematically capable middle school students may be able to conclude
with analogous experiences from magnetism and electrostatics that the de-
pendence on distance of separation is an inverse square law. For middle
school students, teachers can be more successful building cases that yield
qualitative relationships as opposed to yielding mathematical relations and
especially equations. The following activities include first-hand observations,
reasoning from results to formulate conclusions, and analogical reasoning
from concrete situations to abstractions not readily accessible through class-
room experiences. From these more qualitative experiences, later algebraic
formulation of the gravitational force law can make more sense to students.

We saw early in this unit that gravity does not depend on air pressure
pressing down on an object. From other prior experiences, students know
that we can measure the weight of something fairly precisely using a spring
scale (see Figure 11-4). The heavier the object, the greater the spring scale

FIGURE 11-4 Common experiences
using a spring scale to weigh objects.
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reading will be. But what is the cause of that reading if it is not air pressing
down? I could just wave my hands and suggest “gravity,” but I want students
to have a deeper understanding of gravity by at least understanding the
factors on which it depends. I build the case for factors affecting gravity by
determining factors that affect magnetic force, and then arguing by analogy
about factors affecting gravity.

 Students generally love playing with magnets, especially strong ones. I
recommend having at least one strong magnet available for each physical
science classroom. Among other experiences set up for students’ investiga-
tions with magnets, one station has a spring scale firmly attached to a heavy
brick on a table. A string is tied to the hook on the spring scale. The other
end of the string has a loop on which to hang one or more identical paper
clips (see Figure 11-5). Set up properly, the magnet attracts the paper clips
and the string pulls on the spring scale, registering a reading even without
the magnet touching the paper clips. The teacher might ask, “How can the
magnet do that?” Most students from the earlier lesson see that the magnet is
exerting a force at a distance.

Answering such questions as “How do you know?” or “Why do you believe?”
helps students build understanding of how knowledge in the discipline is
constructed.

 Teacher What kind of action at a distance is the magnet
exerting, and what kind of material does it
affect?

Student 1 Magnetic.

Student 2 Magnetism.

Teacher How do you know?

Student 3 ‘Cuz the paper clips are made of iron.

Teacher Did any other action at a distance affect iron?

Student 3 Yeah. Electric force.

FIGURE 11-5 Apparatus for testing
factors that affect magnetic force.
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Student 4 And gravity because the paper clips have a
little mass.

Student 1 But, I know in this case it’s magnetic because
there is a magnet.

Student 2 Also, when we set it up we touched the paper
clips a lot and that’s like cuddling, so there
shouldn’t be any electric force.

Teacher Very good. So, we’re pretty sure it is magnetic
and not electric force. And we are pretty sure it
is not gravitational because gravity force is so
weak.

Student 3 Yeah, we know all that without even talking
about it.

Student 2 So, what’s the point?

I see now that I am losing their attention, so I elect to demonstrate the
apparatus initially myself. I set it up so there are four paper clips being
pulled by but not touching the magnet, and I ask one student to read the
spring scale reading and record the reading on the board. I ask another
student to carefully measure the distance between the paper clips and the
magnet. (Note we are just measuring the separation distance here. With
more mature students, we could get into concerns about measuring center-
to-center distance as necessary for the force equation.)

I then ask what we might do to make the scale reading lower. Upper
elementary and middle school students’ intuition suggests that using a
weaker magnet would make the scale reading lower. Some also suggest
that if we had fewer paper clips, that might do it, too. Other students
suggest we might need more paper clips to lessen the force. Since no
one has mentioned the separation distance, I ask how it might make the
scale reading lower. I ask the students to answer the question for them-
selves first without saying their answers out loud, so everyone has a
chance to do the thinking. Most students suggest moving the magnet
farther away will decrease the force and the scale reading.

Quiet can allow each student time to do his or her own thinking.

It appears that the students are now ready to test their predictions and
hypotheses. We try a weaker magnet and fewer paper clips, but I allow the
distance to get smaller as well. The scale reading rises. Although this is
confusing, I want to give students an opportunity to notice and suggest the
need to control variables without my having to tell them to do so.
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Sometimes, there are emergent goals that need to be addressed before
returning to the primary instructional goal. For example, teaching about the
content may need to move to the background of the instruction while
teaching about the processes of science are brought to the foreground, even
though both are always present.

Student 2 See, it’s what I thought, less paper clips makes
it stronger.

Student 3 No it’s what I said. Smaller distance makes it
bigger.

Student 4 We got too many things happening.

Student 1 I’m getting lost.

Student 3 It’s like we studied before about making fair
tests. This isn’t a fair test.

Student 4 Oh yeah.

Teacher OK. Why not, Chris? Why isn’t it a fair test?
Hang in there Tommy [Student 1]. I think we
are about to clear this up. I will have you
decide when the argument and results of the
experiments make sense to you. The rest of
you need to talk to Tommy to convince him of
what you are saying. Chris, you were saying?

Student 3 You gotta keep things constant. Like change
only one thing and keep other things constant.

Student 4 Oh yeah, like we did before, make a fair test.
OK, Tommy?

Student 1 No, I don’t remember anything about a fair
test.

Student 4 It’s like when we said we have to keep all the
things [a few students are saying “variables”].
Yeah, we have to keep all the variables the
same except one.

Teacher But, does that help you, Tommy?

Student 1 Not really. What’s it got to do with this experi-
ment? That was something we did before
when we were studying other stuff.

Student 3 In this experiment we have to keep the number
of paper clips the same and the strong magnet
the same and change the distance. Only
change the distance, if we want to see whether
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the distance changes the scale reading.
Otherwise, if we change other things too, we
will not know whether it is distance or some-
thing else that made it bigger.

To become learners, independent of authority, students need opportunities to
make sense of experiences and formulate rational arguments.

Student 1 OK. So, what happened?

Student 3 Well, we didn’t keep the other things, vari-
ables, the same. So, we need to do that to find
out what happens.

Teacher Good, to find out whether that one variable, for
example the distance, affects how big the
magnetic force is. [At this point, because the
apparatus is difficult to control, I demonstrate
what does happen when we keep the big
magnet and the number of paper clips the
same and just decrease the distance between
the magnet and paper clips. The scale reading
rises.] Now can we tell if varying the distance
affects the force?

Student 2 Yeah. It does.

Teacher How does distance affect force, Tommy?
Which way does it go? The smaller the dis-
tance . . .

Student 1 The smaller the distance, the bigger the force.
Does it get smaller if the distance gets bigger?

Teacher Good question. Let’s try it. [I increase the
distance, and the scale reading is lower.] So,
what can we conclude now?

Student 1 The bigger the distance the smaller the scale,
and the smaller the distance, the bigger the
force scale.

Teacher Good. Now, what do we need to do to test
whether the number of paper clips makes a
difference in the force?

Student 1 Would we change the paper clips or keep them
the same?

Student 2 If you want to test the paper clips, you change
the number of paper clips and see if that
changes the force.
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Student 1 Is that right? Oh! Oh! I get it. So to see if one
thing affects the other thing, you change the
one thing and see what happens to the other.

The teacher’s questions to clarify students’ statements help the students
become clearer about what they know.

Teacher That’s sounding like you’ve got the idea of fair
test or what is sometimes called “controlling
variables,” but could you say it again and say
what you mean by the word “thing,” which
you used several times.

Student 1 OK. To see if paper clips affect the scale, the
force, you change the number of paper clips
and see if the force changes. Right?

Teacher Yes, good. Now suppose you wanted to see if
the strength of the magnet affected the force.
What would you do?

Student 1 Change the magnet and see if the force
changed.

Teacher What would you do about the other variables?

Student 2 I’d keep . . . [At this point I interrupt to let
Tommy (Student 1) continue his thinking.
Meanwhile, other students are getting restless,
so I let them go ahead with the apparatus and
see what they can find out, which I charge
them with demonstrating later for the rest of
us. Meanwhile, I continue with Tommy and
anyone else who admits to needing some help
here.]

All students can learn, but some need more assistance than others, and some
need more challenge than others.

Teacher So, Tommy. What are the factors that we want
to investigate here?

Student 1 See if bigger magnets have a bigger force.

Teacher OK. Anything else?

Student 1 See if more paper clips makes the force
reading bigger.
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Student 5 And see if distance makes the force bigger or
smaller.

Student 1 We already saw that one.

Teacher If we changed the number of paper clips and
we changed the magnet, would we know
whether one of these affected the force?

Student 6 Not if we changed both. If we changed both,
one or both might be changing the force.

Teacher So, what do we need to do, Tommy?

Student 1 Oh, do we need to only change one thing, like
change the strength of magnet we use and
don’t change the paper clips?

Student 6 And we’d need to keep the distance the same
too right, else that might be changing the force
too?

Teacher Good. So, we think that strength of magnet,
the number of paper clips, and the distance
might all change the magnetic force. So we
just change one of those variables at a time
and keep the others constant and see if the
force changes and in what direction.

Assuming all the students are familiar with the equipment, sometimes it is
more important to help some students focus on the argument while others
wrestle with the details of manipulating the equipment.

In a while, I bring the whole class together. I help the students summa-
rize the ideas they have developed and how the controlled experiments
helped test those ideas. The group that had the challenge to test factors
demonstrates the apparatus and the procedures they used to obtain the
following results:

• The more paper clips, the higher the scale reading (keeping magnet
and distance constant).

• The stronger the magnet, the higher the scale reading (keeping num-
ber of paper clips and distance of separation constant).

• The greater the distance of separation, the lower the scale reading
(keeping number of paper clips and strength of the magnet constant).
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Students need assistance in differentiating between results and conclusions.
Results are specific to the experiment, while conclusions generalize across
situations.

From these results we conclude that the magnetic force grows larger with
more magnetic “stuff” (paper clips containing iron), with a stronger magnet,
or with closer distance of separation between the big magnet and the iron
pieces.

Building a Bridge from Understanding Magnetic Action at a
Distance to Understanding Gravitational Action at a Distance

Analogies can help bridge from the known to the unknown and from the
concrete to the abstract.

I now illustrate two situations on the front board. One is something like
the situation we have just investigated, with a large magnet pulling on an
iron object and stretching a spring scale. Since this diagram is a bit different
from the previous one, I ask students to discuss the similarities and differ-
ences. When they appear to see that the situations just seem to be different
representations of the same conclusions we drew, I move on to the second
diagram. It looks like the first, except that a large sphere represents the
earth, and the object is anything that has mass (see Figure 11-6). The spring
scale is the same. I ask students how this situation is similar and different
from the weighing of a fish depicted in Figure 11-4.

FIGURE 11-6 Diagramming an analogy between magnetism and gravity.
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Student 5 Oh, it’s like, the earth pulls on the object like
the magnet pulls on the piece of iron.

Student 7 They are both actions at a distance.

Student 4 So what. We already knew that.

[So the students appear to recognize the
analogous situations. Now comes the difficult
part.]

Teacher From our previous experiments you know on
what factors the magnetic force depends.
Right?

[There is a chorus of “yes,” but I don’t trust it
because we now have a different diagram, and
I want to know if the students are transferring
what they know about the previous situation.
Students recite the list: “how much iron,”
“how big (strong) the magnet is,” “how far
apart they are.” Now reasonably assured, I
move on.]

Teacher What are some possible factors on which
gravitational force might depend, if it acts
similarly to magnetism?

Student 2 Oh. Maybe it depends on the separation
distance?

Student 8 Maybe on the mass of the thing, ‘cuz that
would be like the number of paper clips.

Student 1 Maybe on the strength of the magnet.

Student 3 No, there is no magnet in the gravity situation.

Teacher OK. Hang on. Tommy [Student 1], there is no
magnet in this situation [pointing to the
gravitational case], but what might be similar
to the strength of the magnet?

Student 1 The strength of the earth?

To build deep understanding of ideas, students need opportunities to transfer
the ideas across contexts. Teachers need to check on this transfer of knowl-
edge to new situations.
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Teacher It is kind of like the strength of the earth isn’t it.
Just like the magnetic force depends on how
big and strong the magnet is, the gravitational
force might depend on how big, how much
mass there is in the earth. Just like the more
magnet we have, the bigger the force; the
more mass the earth has, the bigger the force.
I cannot easily show you, with experiments, on
what factors the gravity force depends. But by
what is called an “analogy,” we can make a
good guess at the factors gravity depends on.
If gravity action at a distance acts like magnetic
action at a distance, it should depend on how
much there is of each of the two objects
interacting and on how big the separation
distance is. By careful experiments with
sensitive apparatus like the Cavendish torsion
balance we saw before, scientists have verified
that the guesses we just made work out in
experiments. That is, the gravity force, evi-
denced by the spring scale reading, would be
smaller if the mass of the earth were smaller, if
the mass of the ball being held near the earth
were of less mass, or if the ball were placed
farther away from the earth.

Parts C and D: What Are the Effects of Gravity?

Explaining Falling Bodies

Part A was about “what gravity is not.” That is, the effects of the sur-
rounding fluid are not the cause of weight or gravity. But we ended up
seeing that fluids such as air and water can have an effect on scale readings
when we attempt to weigh objects. Part B was about the nature of gravita-
tional force being one of the actions at a distance. And by analogy we
concluded that the magnitude of the gravitational force depends on the
masses of the two interacting objects and on the separation distance be-
tween them. Investigations into the nature of forces could stop here or
could continue and focus on gaining a better understanding of the effects
of gravity.

Subsequent investigations in my classes involve explaining the phenom-
ena of falling bodies. Part of a rich understanding of falling bodies is to
understand the effects of air (or fluid) resistance as well those of gravity.
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Activities in these subunits are more consistent with what is presently sug-
gested in curricula, so they are not described here. But students’ preconcep-
tions, such as “heavier falls faster,” need to be addressed. More mature stu-
dents can also quantify the acceleration of freely falling bodies and arrive at
equations describing the motion in free fall. But younger students can gain a
qualitative understanding of free fall as speeding up uniformly, and they can
gain some understanding of factors affecting air resistance.

Explaining Motion of Projectiles

Next investigations, especially for older students, can involve under-
standing the motion of projectiles. Preconceptions, including “horizontal
motion slows the vertical fall,” will need to be addressed. Understanding the
independence of horizontal and vertical motions is a learning goal. Again
those activities are not discussed in detail here. Suffice it to say that addi-
tional investigations into the nature and effects of gravity will build a stron-
ger relationship between ideas and increase the likelihood that what is learned
will be understood and remembered.

SUMMARY
In this chapter, we have tried to make real the principles of How People

Learn by writing from our experience and the experience of other teachers,
researchers, and curriculum developers. The sequence of activities described
is not the only one that could foster learning of the main ideas that have
been the focus here. Likewise, the dialogues presented are just examples of
the many conversations that might take place. Teaching and learning are
complex activities that spawn multiple problems suggesting multiple solu-
tions. What we have discussed here is just one set of solutions to exemplify
one set of generalizations about how students learn.

That having been said, the activities described are ones that real teach-
ers are using. But this chapter has not been just about activities that teachers
can take away and use next week. Our main purpose is to give teachers and
curriculum developers an idea of what it looks like when assessment, cur-
riculum, and teaching act as a system consistent with the principles of How
People Learn. We have tried to give the reader the flavor of what it means to
teach in a way that is student-centered, knowledge-centered, and assess-
ment-centered. By looking at the teacher’s decision making, we have at-
tempted to provide a glimpse of what it is like to be a teacher or a learner in
a learning community that is respectful of members of the community while
at the same time being critical of the ideas they voice. Students are encour-
aged to question each other by asking, “What do you mean by that?” “How
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do you know?” But they are also guided to listen and allow others in the
community to speak and complete their thoughts.

Students’ preconceptions are identified and addressed, and subsequent
learning is monitored. This means assessment is used primarily for formative
learning purposes, when learning is the purpose of the activities in the
classroom. By listening to their students, teachers can discern the sorts of
experiences that are familiar and helpful in fostering the learning of other
students.

Learning experiences need to develop from first-hand, concrete experi-
ences to the more distant or abstract. Ideas develop from experiences, and
technical terms develop from the ideas and operations that are rooted in
those experiences. When terms come first, students just tend to memorize so
much technical jargon that it sloughs off in a short while. Students need
opportunities to see where ideas come from, and they need to be held
responsible for knowing and communicating the origins of their knowledge.
The teacher should also allow critical questions to open the Pandora’s box
of issues that are critical to the content being taught. The better questions
are those that raise issues about the big ideas important to deep understand-
ing of the discipline. Some of the best questions are those that come from
students as they interact with phenomena.

Students need opportunities to learn to inquire in the discipline. Teach-
ers can model the sorts of questions that the students will later ask them-
selves. Free inquiry is desirable, but sometimes (e.g., when understanding
requires careful attention and logical development) inquiry is best guided,
especially when the teacher is responsible for the learning of 30 or more
students. But the teacher does not need to tell students the answers; doing
so often short-circuits their thinking. Instead, teachers can guide their stu-
dents with questions—not just factual questions, such as “What did you
see?”, but the more important questions that foster student thinking, such as
those that ask students to provide explanations or make sense of the phe-
nomena observed. By listening respectfully and critically to their students,
teachers can model appropriate actions in a learning community. Through
questions, teachers can assist learners in monitoring their own learning.
Finally, teachers also need the freedom to learn in their classrooms—to
learn about both learning and about teaching.

NOTES
1. We use the term “benchmark lesson” to mean a memorable lesson that initiates

students’ thinking about the key content issues in the next set of activities.
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2. The computer-based Diagnoser assessment system described is available on
the web through www.FACETInnovations.com. Thus, it is accessible to teach-
ers and students anytime from a computer with web access and appropriate
browser. The concept and program were developed by the authors, Minstrell
and Kraus, Earl Hunt, and colleagues at the University of Washington, FACET
Innovations, Talaria Inc., and surrounding school districts. It includes sets of
questions for students, reports for teachers, and suggested lessons to address
problematic facets of thinking.
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12
Developing Understanding Through

Model-Based Inquiry
James Stewart, Jennifer L. Cartier, and

Cynthia M. Passmore

A classroom of students need only look at each other to see remarkable
variation in height, hair color and texture, skin tone, and eye color, as well
as in behaviors. Some differences, such as gender, are discrete: students are
male or female. Others, such as hair color or height, vary continuously within
a certain range. Some characteristics—10 fingers, 10 toes, and one head—do
not vary at all except in the rarest of cases. There are easily observed simi-
larities between children and their parents or among siblings, yet there are
many differences as well. How can we understand the patterns we observe?

Students need only look through the classroom window to take these
questions a next step. Birds have feathers and wings—characteristics on
which they vary somewhat from each other but on which they are com-
pletely distinct from humans. Dogs, cats, and squirrels have four legs. Why
do we have only two? As with much of science, students can begin the study
of genetics and evolution by questioning the familiar. The questions mark a
port of entry into more than a century of fascinating discovery that has
changed our understanding of our similarities, our differences, and our dis-
eases and how to cure them. That inquiry has never been more vital than it
is today.

It is likely that people observed and wondered about similarities of
offspring and their parents, and about how species of animals are similar
and distinct, long before the tools to record those musings were available.
But major progress in understanding these phenomena has come only rela-
tively recently through scientific inquiry. At the heart of that inquiry is the
careful collection of data, the observation of patterns in the data, and the
generation of causal models to construct and test explanations for those
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patterns. Our goal in teaching genetics and evolution is to introduce stu-
dents to the conceptual models and the wealth of knowledge that have been
generated by that scientific enterprise. Equally important, however, we want
to build students’ understanding of scientific modeling processes more gen-
erally—how scientific knowledge is generated and justified. We want to
foster students’ abilities not only to understand, but also to use such under-
standings to engage in inquiry.

For nearly two decades, we have developed science curricula in which
the student learning outcomes comprise both disciplinary knowledge and
knowledge about the nature of science. Such learning outcomes are realized
in classrooms where students learn by “doing science” in ways that are
similar to the work scientists do in their intellectual communities. We have
created classrooms in which students are engaged in discipline-specific in-
quiry as they learn and employ the causal models and reasoning patterns of
the discipline. The topics of genetics and evolution illustrate two different
discipline-specific approaches to inquiry. While causal models are central in
both disciplines, different reasoning patterns are involved in the use or con-
struction of such models. The major difference is that the reconstruction of
past events, a primary activity in the practice of evolutionary biology, is not
common in the practice of genetics. The first section of this chapter focuses
on genetics and the second on evolution. The third describes our approach
to designing classroom environments, with reference to both units.

Our approach to curriculum development emerged as a result of col-
laborative work with high school teachers and their students (our collabora-
tive group is known as MUSE, or Modeling for Understanding in Science
Education).1 As part of that collaboration, we have conducted research on
student learning, problem solving, and reasoning. This research has led to
refinements to the instruction, which in turn have led to improved student
understanding.

 GENETICS
An important step in course design is to clarify what we want students

to know and be able to do.2  Our goal for the course in genetics is for
students to come away with a meaningful understanding of the concepts
introduced above—that they will become adept at identifying patterns in the
variations and similarities in observable traits (phenotypes) found within
family lines. We expect students will do this using realistic data that they
generate themselves or, in some cases, that is provided. However, while
simply being familiar with data patterns may allow students to predict the
outcomes of future genetic crosses, it provides a very incomplete under-
standing of genetics because it does not have explanatory power. Explana-
tory power comes from understanding that there is a physical basis for those
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patterns in the transmission of genetic material (i.e., that there are genes,
and those genes are “carried” on chromosomes from mother and father to
offspring as a result of the highly specialized process of cell division known
as meiosis) and as a result of fertilization.

To achieve this understanding, students must learn to explain the pat-
terns they see in their data using several models in a consistent fashion.
Genetics models (or inheritance pattern models) explain how genes interact
to produce variations in traits. These models include Mendel’s simple domi-
nance model, codominance, and multiple alleles. But to understand how the
observed pairings of genes (the genotype) came about in the first place,
students must also understand models of chromosome behavior, particularly
the process of segregation and independent assortment during meiosis (the
meiotic model).

We have one additional learning outcome for students—that they will
couple their understanding of the transmission of the genetic material and
their rudimentary understanding of how alleles interact to influence pheno-
type with an understanding of the relationship of DNA to genes and the role
played by DNA products (proteins) in the formation of an organism’s phe-
notype (biomolecular models). DNA provides the key to understanding why
there are different models of gene interaction and introduces students to the
frontier of genetic inquiry today.

These three models (genetic, meiotic, and biomolecular) and the rela-
tionships among them form the basic conceptual framework for understand-
ing genetics. We have designed our instruction to support students in put-
ting this complex framework in place.

Attending to Students’ Existing Knowledge

While knowledge of the discipline of genetics has shaped our instruc-
tional goals, students’ knowledge—the preconceptions they bring to the
classroom and the difficulties they encounter in understanding the new
material—have played a major role in our instructional design as well.

The genetics course is centered around a set of scientific models. How-
ever, in our study of student learning we have found, as have others,3  that
students have misunderstandings about the origin, the function, and the
very nature of causal models (see Box 12-1). They view models in a “naïve
realistic” manner rather than as conceptual structures that scientists use to
explain data and ask questions about the natural world.4

Following our study of student thinking about models, we altered the
instruction in the genetics unit to take into consideration students’ prior
knowledge about models and particular vocabulary for describing model
attributes. Most important, we recognized the powerful prior ideas students
had brought with them about models as representational entities and explic-
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BOX 12-1 Student Conceptions of Models

One early study of student learning in the genetics unit focused on identifying the
criteria students used when assessing their models for inheritance phenomena.5

The study was predicated on a commitment to developing with students early in
the course the idea of consistency as a basis for model assessment. Students read
a mystery scenario involving a car accident and evaluated several explanations of
the cause of the accident. Each explanation was problematic because it was either
(1) inconsistent with some of the information the students had been given, (2)
inconsistent with their prior knowledge about the world, or (3) unable to account
for all of the information mentioned in the original scenario. Students discussed
these explanations and their shortcomings, and the teacher provided the language
for talking about model assessment criteria: she instructed them to seek explana-
tory power, predictive power (which was discussed but not applied to the accident
scenario), internal consistency (among elements within the model), and external
consistency (between a model and one’s prior knowledge or other models).

Throughout the genetics unit, students were prompted to use these criteria to
evaluate their own inheritance models. Despite the explicit emphasis on consis-
tency as a criterion for model assessment, however, we found that very few stu-
dents actually judged their models this way. Instead, students valued explanatory
adequacy, visual simplicity, and “understandability” more strongly. A closer look at
the work of students in this study showed that most of them viewed models not
as conceptual structures but as physical replicas, instructional tools, or visual rep-
resentations. In fact, the common use of the term to describe small replicas—as in
model airplanes—sometimes interferes with students’ grasp of a causal model as
a representation of a set of relationships. Similarly, when attempting to apply model
assessment criteria to their explanations for data patterns in liquid poured from a
box, several students treated “internal consistency” and “external consistency”
literally: they evaluated the box’s proposed internal components and the external
phenomena (observations) separately. This confusion stemmed from students’ prior
understanding of concepts associated with the vocabulary we provided: clearly
“internal” and “external” were already meaningful to the students, and their prior
knowledge took precedence over the new meanings with which we attempted to
imbue these terms. Given this misunderstanding of models, it was not surprising
that our genetics students neither applied nor discussed the criterion of conceptual
consistency within and among models.
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itly addressed these ideas at the outset of the unit. In the genetics unit,
teachers employ tasks early on that solicit students’ ideas about scientific
models and explicitly define the term “model” as it will be used in the
science unit. Frequently, teachers present sample models that purport to
explain the phenomena at hand and ask students to evaluate these models.
Teachers create models that have particular shortcomings in order to prompt
discussion by students. Most commonly, students will describe the need for
a model to explain all the data, predict new experimental outcomes, and be
realistic (their term for conceptual consistency). Throughout the course, teach-
ers return to these assessment criteria in each discussion about students’
own inheritance models.

A subsequent study has shown that these instructional modifications
(along with other curricular changes in the genetics unit) help students un-
derstand the conceptual nature of scientific models and learn how to evalu-
ate them for consistency with other ideas.6  We now provide an example of
an initial instructional activity—the black box—designed to focus students’
attention on scientific modeling.

As Chapter 1 suggests, children begin at a very young age to develop
informal models of how things work in the world around them. Scientific
modeling, however, is more demanding. Students must articulate their model
as a set of propositions and consider how those propositions can be con-
firmed or disconfirmed. Because this more disciplined modeling is different
from what students do in their daily lives, we begin the course with an
activity that focuses only on the process of modeling. No new scientific
content is introduced. The complexity of the task itself is controlled to focus
students on the “modeling game” and introduce them to scientific norms of
argumentation concerning data, explanations, causal models, and their rela-
tionships. This initial activity prepares students for similar modeling pursuits
in the context of sophisticated disciplinary content.

During the first few days of the genetics course, the teacher presents the
students with a black box—either an actual box or a diagram and descrip-
tion of a hypothetical box—and demonstrates or describes the phenomenon
associated with it. For example, one box is a cardboard detergent container
that dispenses a set amount of detergent each time it is tipped, while another
is a large wooden box with a funnel on top and an outlet tube at the bottom
that dispenses water in varying amounts, shown in Figure 12-1. Once the
students have had an opportunity to establish the data pattern associated
with the particular box in question, the teacher explains that the students’
task is to determine what mechanisms might give rise to this observable
pattern. During this activity (which can take anywhere from 3 to 11 class
periods, depending on the black box that is used and the extent to which
students can collect their own data), the students work in small teams. At the
conclusion of the task, each team creates a poster representing its explana-
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tion for the box mechanism and presents it to the class. Classmates offer
criticism and seek clarification during these presentations.

As the dialogue below suggests, the exercise begins with students en-
gaged in a central activity of scientists—making observations.

Teacher Making observations is important in science. I
want you to observe this carton. Just call out
what you notice and I will write it on the board.

The students respond with a variety of observations:

Ian The box is white with blue lettering.

Delia The contents slosh around and it looks like
liquid soap when we pour it.

Sarah Hey, it stopped coming out! Try to pour it
again so we can see what happens.

Owen It always pours about the same amount then
stops.

Black Box

A typical pattern of data would be:

Water In (ml) Water Out (ml)

400 0

400 400

400 600

400 400

400 0

400 1000

400 0

400 400

and so forth.

FIGURE 12-1 One black box used in the MUSE science curriculum and typical data
patterns associated with the box.
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After several minutes of listening to the students, the teacher stops them
and invites them to take a closer look at the carton, prompting them to
identify patterns associated with their observations. Their reflection on these
patterns leads the students to propose manipulations of the container, which
in turn produce more observations. The teacher now interrupts them to
guide their attention, saying:

Teacher Okay, you’ve made some wonderful observa-
tions, ones that you are going to be using in
just a few minutes. But, there is more to
science than making observations. Scientists
also develop ideas of what is not visible in
order to explain that which is. These ideas are
called models.

She goes on to challenge them:

Teacher Imagine an invisible “world” inside the
container that, if it existed in the way that you
imagine, could be used to explain your
observations. I want you to make drawings of
your imagined world and maybe some groups
will have time to develop a three-dimensional
representation too. And, one last thing, I want
each group to develop at least one test of your
model. Ask yourself, “If the world inside the
carton is as I imagine it and I do X to the
carton, what result would I expect?”

Over the next two class periods, the students work in animated groups
to develop models that can be used to explain their observations. They
describe, draw, and create three-dimensional representations of what they
think is in the carton. They argue. They negotiate. They revise. Then they
share drawings of their models with one another.

Sarah Hey Scott, you have a different idea than ours.
How does that flap work?

Scott The flap is what stops the detergent from
gushing out all at once when you tip it.

Delia Yeah, I get that, but does your design allow the
same amount of detergent to come out every
time? Because we tried a flap, too, but we
couldn’t figure out how to get the amount to
be the same.
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The students also propose tests of their models:

Sarah Well, Scott is saying that the flap is like a
trapdoor and it closes to keep the detergent in.
But I think that if there is a trapdoor-like thing
in there, then we should be able to hear it
close if we listen with a stethoscope, right?

Delia Hey, Mrs. S., can we get a stethoscope?

A visitor to the classroom would notice that Mrs. S. listens attentively to
the descriptions that each group gives of its model and the observations the
model is designed to explain. She pays special attention to the group’s inter-
actions with other groups and is skillful in how she converses with the
students during their presentations. Through her comments she demonstrates
how to question the models of others and how to present a scientific argu-
ment. To one group she says, “I think I follow your model, but I am not sure
how it explains why you get 90 milliliters of liquid each time you tip the
box.” To another she comments, “You say that you have used something
similar to a toilet bowl valve. But I don’t understand how your valve allows
soap to flow in both directions.” And to a third group she asks, “Do you
think that Ian’s model explains the data? What question would you ask his
group at this point?” By the end of the multiday activity, the students are
explicit about how their prior knowledge and experiences influence their
observations and their models. They also ask others to explain how a pro-
posed model is consistent with the data and challenge them when a compo-
nent of a model, designed to explain patterns in observations, does not
appear to work as described.

This activity creates many opportunities to introduce and reinforce foun-
dational ideas about the nature of scientific inquiry and how one judges
scientific models and related explanations. As the class shares early ideas,
the teacher leads discussion about the criteria they are using to decide whether
and how to modify these initial explanations. Together, the class establishes
that causal models must be able to explain the data at hand, accurately
predict the results of future experiments, and be consistent with prior knowl-
edge (or be “realistic”) (see the example in Box 12-2). Through discussion
and a short reading about scientific inquiry and model assessment, the teacher
helps students connect their own work on the black boxes with that of
scientists attempting to understand how the natural world works. This frame-
work for thinking about scientific inquiry and determining the validity of
knowledge claims is revisited repeatedly throughout the genetics unit.

Other modeling problems might serve just as well as the one we intro-
duce here. What is key is for the problem to be complex enough so that
students have experiences that allow them to understand the rigors of scien-
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BOX 12-2 Assessing Knowledge Claims in Genetics

While working to revise Mendel’s simple dominance model to account for an in-
heritance pattern in which there are five variations (rather than two), many stu-
dents propose models in which each individual in the population has three alleles
at the locus in question. However, such a model fails to hold up when evaluated
according to the criteria established during the black box activity because it is in-
consistent with the students’ prior knowledge about meiosis and equal segrega-
tion of parental information during gamete formation:

Teacher I’m confused. I’m just curious. I’m a newcomer to this
research lab and I see you using two alleles in some
areas and three in other areas.

David We got rid of the three allele model.

Michelle Cross that out. It didn’t work.

David We didn’t know how two parents who each had three
alleles could make kids with three alleles.

Michelle When we tried to do the Punnett square and look at
what was happening in meiosis, it didn’t make sense.

Chee Right. We thought maybe one parent would give the
kid two alleles and the other parent would just give
one. But we didn’t like that.

David We had to stick with only two alleles, so we just made
it three different kinds of alleles in the population.

Chee But now every person has only two alleles inside their
cells. Right?

 Teacher In other words, you didn’t like this first, three allele,
model because it is inconsistent with meiosis?

tific modeling. In particular, the activity is designed to give students an op-
portunity to do the following:

• Use prior knowledge to pose problems and generate data. When sci-
ence teaching emphasizes results rather than the process of scientific in-
quiry, students can easily think about science as truths to be memorized,
rather than as understandings that grow out of a creative process of observ-
ing, imagining, and reasoning by making connections with what one already
knows. This latter view is critical not only because it offers a view of science
that is more engaging and inviting, but also because it allows students to
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grasp that what we understand today can be changed, sometimes radically,
by tomorrow’s new observations, insights, and tools. By carrying out a mod-
eling activity they see as separate from the academic content they are study-
ing in the unit, students are more likely to engage in understanding how
models are generated rather than in learning about a particular model.

• Search for patterns in data. Often the point of departure between
science and everyday observation and reasoning is the collection of data
and close attention to its patterns. To appreciate this, students must take part
in a modeling activity that produces data showing an interesting pattern in
need of explanation.

• Develop causal models to account for patterns.7 The data produced
by the activity need to be difficult enough so that the students see the mod-
eling activity as posing a challenge. If an obvious model is apparent, the
desired discourse regarding model testing and consideration of the features
of alternative models will not be realized.

• Use patterns in data and models to make predictions. A model that is
adequate to explain a pattern in data provides relatively little power if it
cannot also be used for predictive purposes. The activity is used to call
students’ attention to predictive power as a critical feature of a model.

• Make ideas public, and revise initial models in light of anomalous
data and in response to critiques of others. Much of the schoolwork in which
students engage ends with a completed assignment that is graded by a teacher.
Progress in science is supported by a culture in which even the best work is
scrutinized by others, in which one’s observations are complemented by
those of others, and in which one’s reasoning is continually critiqued. For
some students, making ideas public and open to critique is highly uncom-
fortable. A low-stakes activity like this introductory modeling exercise can
create a relatively comfortable setting for familiarizing students with the cul-
ture of science and its expectations. A teacher might both acknowledge the
discomfort of public exposure and the benefits of the discussion and the
revised thinking that results in progress in the modeling effort. Students
have ample opportunity to see that scientific ideas, even those that are at the
root of our most profound advances, are initially critiqued harshly and often
rejected for a period before they are embraced.

Learning Genetics Content

Having provided this initial exposure to a modeling exercise, we turn to
instruction focused specifically on genetics. While the core set of causal
models, assumptions, and argument structures generated the content and
learning outcomes for our genetics unit, our study of student understanding
and reasoning influenced both the design and the sequencing of instruc-
tional activities. For example, many high school students do not understand



DEVELOPING UNDERSTANDING THROUGH MODEL-BASED INQUIRY 525

the interrelationships among genetic, meiotic, and biomolecular models, re-
lationships that are key to a deep understanding of inheritance phenom-
ena.8  To deal with this problem, we identified learning outcomes that ad-
dress the conceptual connections among these families of models, and the
models are introduced in a sequence that emphasizes their relatedness. Ini-
tially, for example, we introduced genetic models, beginning with Mendel’s
model of simple dominance, first. This is typical of many genetics courses.
In our early studies (as well as in similar studies on problem solving in
genetics9 ), students often did not examine their inheritance models to see
whether they were consistent with meiosis. In fact, students proposed mod-
els whereby offspring received unequal amounts of genetic information from
their two parents or had fewer alleles at a particular locus than did their
parents.10  Because of their struggles and the fact that meiosis is central to
any model of inheritance, we placed this model first in the revised curricular
sequence. Students now begin their exploration of Mendelian inheritance
with a firm understanding of a basic meiotic model and continue to refer to
this model as they examine increasingly complex inheritance patterns.

A solid integration of the models does not come easily, however. In
early versions of the course, it became apparent that students were solving
problems, even sophisticated ones, without adequately drawing on an inte-
grated understanding of meiotic and genetic models.11 In response, we de-
signed a set of data analysis activities and related homework that required
students to integrate across models (cytology, genetics, and molecular biol-
ogy) when conducting their genetic investigations and when presenting
model-based explanations to account for patterns in their data. By providing
tasks that require students to attend to knowledge across domains and by
structuring classrooms so that students must make their thinking about such
integration public, we have seen improvements in their understanding of
genetics.12

We then focus on inheritance models, beginning with Mendel’s model
of simple dominance. Mendel, a nineteenth-century monk, grew generation
after generation of pea plants in an attempt to understand how traits were
passed from parent plants to their offspring. As Chapter 9 indicates, Mendel’s
work represented a major breakthrough in understanding inheritance,
achieved in large part by selecting a subject for study—peas—that had dis-
continuous trait variations. The peas were yellow or green, smooth or
wrinkled. Peas can be self-fertilized, allowing Mendel to observe that some
offspring from a single genetic source have the same phenotype as the
parent plants and some have a different phenotype. Mendel’s work con-
firmed that individuals can carry alleles that are recessive—not expressed in
the phenotype. By performing many such crosses, Mendel was able to de-
duce that the distribution of alleles follows the laws of probability when the
pairing of alleles is random. These insights are fundamental to all the work
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in classical transmission genetics since Mendel. Students need ample oppor-
tunity to work with Mendel’s model if they are to make these fundamental
insights their own.

The development of modern genetic theory from its classical Mendelian
origins has been the subject of much historical and philosophical analysis.
Darden13  draws on historical evidence to identify a set of strategies used by
scientists to generate and test ideas while conducting early inquiries into the
phenomenon of inheritance. She traces the development of a number of
inheritance models that were seen at least originally to be at odds with those
underlying a Mendelian (i.e., simple dominance) explanation of inheritance.
Among these models are those based on the notions of linkage and multiple
forms (alleles) of a single gene. In short, Darden provides a philosophical
analysis of the history of model-based inquiry into the phenomenon of in-
heritance from a classical genetics perspective. Drawing on Darden’s work
and our own experiences as teachers and researchers, we made a primary
feature of the course engaging students in building and revising Mendel’s
simple dominance model. Students thereby have rich opportunities to learn
important genetics concepts, as well as key ideas about the practice of ge-
netics.

Inheritance is considerably more complex than Mendel’s simple domi-
nance model suggests. Mendel was not wrong. However, simple dominance
applies to only a subset of heritable traits. Just as geneticists have done,
students need opportunities to observe cases that cannot be explained by a
simple dominance model. We provide such opportunities and thus allow
students to conclude that Mendel’s model is not adequate to explain the
data. Students propose alternatives, such as the codominance model, to
explain these more complex patterns.

Once students have come to understand that there are multiple models
of allele interaction, they are primed for an explanation of why we observe
these different inheritance patterns. How can a recessive allele sometimes
have an influence and sometimes not? With that question in mind, we intro-
duce DNA and its role in protein production. What drives the instructional
experience throughout is students’ active engagement in inquiry, which we
turn to in the next section.

Student Inquiry in Genetics

Early instruction in the genetics class includes a few days during which
students learn about the meiotic model14 and the phenomena this model can
explain. In an introductory activity, students look at sets of pictures and are
asked to determine which individuals are members of the same families.
The bases for their decisions include physical similarities between parents
and children and between siblings. Thus, instruction about meiosis focuses
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on how the meiotic model can account for these patterns: children resemble
their parents because they receive information from both of them, and sib-
lings resemble each other but are not exactly alike because of the random
assortment of parental information during meiosis.

After students have developed some understanding of meiosis, they cre-
ate, with guidance from the teacher, a representation of Mendel’s model of
simple dominance (see Figures 12-2a and 12-b) in an attempt to further
explain why offspring look like parents. First, “Mendel” (a teacher dressed in
a monk’s habit) pays the class a visit and tells them he would like to share
some phenomena and one important model from his own research with
them. In character, “Mendel” passes out three packets of peas representing a
parental generation and the F1 and F2 generations (the first and second filial
generations, respectively). He asks the students to characterize the peas
according to color and shape. For example, the parental generation includes
round green peas and wrinkled yellow peas. The F1 generation contains
only round yellow peas. Finally, the F2 generation contains a mix of round
yellow, wrinkled yellow, round green, and wrinkled green peas in a ratio of
approximately 9:3:3:1. Using what they already know about meiosis—par-
ticularly the fact that offspring receive information from both parents—the
students reconstruct Mendel’s model of simple dominance to explain these
patterns (see Figures 12-2a and 12-b).

While Darden’s work (discussed above) aides in the identification of
important inheritance models and strategies used by scientists to judge those
models, it is the work of Kitcher15 that places the simple dominance model
developed by students into context with comparable models of geneticists.
According to Kitcher,16  genetic models provide the following information:

(a) Specification of the number of relevant loci and the
number of alleles at each locus; (b) Specification of the
relationships between genotypes and phenotypes; (c)
Specification of the relations between genes and chromo-
somes, of facts about the transmission of chromosomes to
gametes (for example, resolution of the question whether
there is disruption of normal segregation) and about the
details of zygote formation; (d) Assignment of genotypes to
individuals in the pedigree.

Moreover, Kitcher17  describes how such models might be used in inquiry:

. . . after showing that the genetic hypothesis is consistent
with the data and constraints of the problem, the principles
of cytology and the laws of probability are used to compute
expected distributions of phenotypes from crosses. The
expected distributions are then compared with those
assigned in part (d) of the genetic hypothesis.
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Phenotype Variations:  

Alleles in the Population:  

Relationship between genotypes and phenotypes:  

two  

two  

Genotype  Phenotype  
(allele combinations 

 in individuals)  
(appearance)  

Variation A  

Variation B  

1 1 

1 2 

2 2 

Phenotype Variations:  
Alleles in the Population:  

Tall and Short  
1 and 2 

Tall pea plants  

Short pea plants  

1 1 

1 2 

2 2 

  
For Example  

  

Trait: Pea Plant Height  

 

(b) Meiotic processes governing
inheritance. The underlying processes
governing simple dominance are Mendel’s
law of segregation (the meiotic process of
sex cell formation during which half of all
parental genetic information is packaged
into sperm or egg cells) and fertilization
(during which genetic information from both
parents combines in the offspring).

FIGURE 12-2 Mendel’s model of simple dominance.
(a) Students’ representation of Mendel’s simple dominance model. This model accounts for the
inheritance of discrete traits for which there are two variants (designated A and B). Each
individual in the population possesses two alleles (designated 1 and 2) for the trait; one allele
(here, allele 1) is completely dominant over the other. For plant height, for example, there are
two phenotypic variants: short and tall. There are only two different alleles in the population.
Plants with a genetic makeup of (1,1) or (1,2) will be tall, whereas plants with a genetic
makeup of (2,2) will be short.

Processes:  

2 2 

1 2 

1 2 

2 

2 

Segregation  
(in meiosis)  

1 2 

Fertilization  
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With their teacher’s guidance, students represent Mendel’s simple domi-
nance model in a manner consistent with Kitcher’s description of the models
of geneticists. They pay particular attention to (b) and (d) above: specifying
the relationships between genotypes and phenotypes and identifying the
genotypes of individuals in their experimental populations. Because our
unit does not address multigene traits, one locus per trait is assumed (thus
part of criterion (a) above is not applicable in this case), and students focus
on determining the number of alleles at that locus. Finally, the students’
prior understanding of meiosis—developed earlier in the unit—enables them
to specify chromosomal transmission of genes for each particular case (item
(c) above). The vignette below portrays students engaged in this type of
inquiry.

Genetic Inquiry in the Classroom: A Vignette

Nineteen students are sitting at lab tables in a small and cluttered high
school biology classroom. The demonstration desk at the front of the room
is barely visible under the stacks of papers and replicas of mitotic cells. A
human skeleton wearing a lab coat and a sign reading “Mr. Stempe” stands
in a corner at the front of the room, and the countertops are stacked with
books, dissecting trays, and cages holding snakes and gerbils.

During the previous few days, the students in this class have studied the
work of Mendel. Years of work resulted in his publication of Experiments on
Plant Hybridization,18 a paper in which he presented his model explaining
the inheritance of discontinuous traits in plants.19 The students have read an
edited version of this paper and refer to Mendel’s idea as the “simple domi-
nance model” because it explains the inheritance of traits derived from two
alleles (or pieces of genetic information) when one of the alleles is com-
pletely dominant over the other (see Figures 12-2a and 12-2b).

During class on this day, the students’ attention is drawn to the cabinet
doors along the length of the room. These doors are covered with students’
drawings of family pedigrees labeled “Summers: Marfan” (see Figure 12-3a),
“Healey: Blood Types,” “Jacques: Osteogenesis Imperfecta,” and “Cohen:
Achondroplasia.” The teacher is standing at the side of the room facilitating
a discussion about these family pedigrees.

Teacher Now that we’ve learned about Mendel’s model,
can we use it to explain any of the patterns in
our pedigrees?

Kelly Well, I think Marfan is dominant.

Teacher Okay. Since we are using 1’s and 2’s to show
alleles in the Mendel model, can you put some
numbers up there so we can see what you’re
talking about?
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Kelly walks to one of the cabinets at the side of the room and begins to
label each of the circles and squares on the pedigree with two alleles: some
are assigned the genotype 1,2 (heterozygous or possessing two different
alleles) and others 2,2 (homozygous recessive or possessing two recessive
alleles) (see Figures 12-3a and 12-3b, respectively).

Teacher Kelly thinks that the allele that causes Marfan
syndrome is dominant and she’s put some
genotypes up there to help us see her idea.
What do you all think about that?

Chee Yeah, that’s OK. That works.

Jamie Yeah, because all the filled in ones, the ones
who have Marfan, are all 1,2’s, so it’s domi-
nant.

Curtis Well, but we started off by saying that it’s
dominant. I mean, we made that assumption. If
we say that the Marfan allele is recessive and
switch all the affected genotypes to 2,2’s then
that would work too. Do you know what I’m
saying?

Teacher Wow! That’s quite an idea. I think we need help
thinking about that, Curtis, so can you write
your genotypes next to Kelly’s in a different
color?

Curtis proceeds to label the same pedigree consistently with his idea that the
Marfan allele is actually recessive (see Figure 12-3c).

Teacher Well, that’s very interesting.

David I don’t get it. Both of them work.

Teacher You think they both work. Marfan could be
dominant or recessive.

Lucy Well, we can’t tell right now.

Sarah But if we could take two people with Marfan,
like the grandmother and the son, and find out
what kind of kids they’d have, then we could
tell for sure.

Sam That’s sick, man!

Teacher Wait a minute. Wait a minute. What’s Sarah
saying here?

Sarah That if you got children from two affected
people . . .
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Summers: Marfan  

healthy female  

affected female 

affected male  

healthy male  

1 

2 

1,2  

2,2  

dominant allele  

recessive allele  

genotype of heterozygous    
individual  
genotype of homozygous    
recessive individual  

FIGURE 12-3 Pedigrees representing inheritance of Marfan symdrome in the Summers family.
(a) The original pedigree, representing the inheritance pattern within the Summers family
without specifying individual genotypes.

1,2  

1,2  1,2  

1,2  

2,2  

2,2  2,2  2,2  

2,2  

FIGURE 12-3 (b) Kelly’s genotype assignments, assuming that Marfan syndrome is inherited as
a dominant trait.

Curtis  . . . that you could tell if it was recessive or
dominant.

Teacher What would you see?

Sarah Well, if it’s recessive, then all the kids would be
Marfan, too. But if it’s dominant, then some of
the kids might not be Marfan ‘cause they could
get like a 2 from both parents.
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Teacher Do you all see that? Sarah is saying that if the
parents had what genotype?

Sam They’d have to be a 1,2, right?

Teacher A 1,2. Then if these parents had kids, their kids
could be what?

Kelly 1,2 or 1,1 or 2,2.

Teacher Right. So Sarah is actually proposing an
experiment that we could do to find out more
[see Box 12-3].

Teacher Now what about the Healey pedigree? Can
Mendel explain that one?

Chee I don’t think so.

Chris Why not?

Chee Because there’s four things. And Mendel only
saw two.

Teacher Four things?

Sarah Yeah. Like phenotypes or traits or whatever.

David There’s people who have type A and people
who have B and some who have AB or O.

Tanya But isn’t AB the most dominant or something?

Teacher What do you mean by “most dominant,”
Tanya?

Tanya I don’t know. It’s just like . . .

Chee  . . . like it’s better or stronger or something.

Tanya Like you’re gonna see that showing up more.

Lee Well even if that’s true, you still can’t really
explain why there’re A’s and B’s, too. It’s not
just AB is dominant to O, right? You still have

2,2  

2,2  2,2  

2,2  

1,2  

1,2  1,2  1,2  

1,2  

FIGURE 12-3 (c) Curtis’ genotype assignments, assuming that Marfan syndrome is inherited as
a recessive trait.
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BOX 12-3 Sarah’s Thought Experiment

In Sarah’s thought experiment, two individuals with Marfan’s syndrome would pro-
duce sex cells, and those sex cells would recombine during fertilization (see Figure
12-3). Looking at the children from such a mating would enable the students to
determine whether Marfan’s syndrome is inherited as a dominant or recessive trait
because the only situation in which one would expect to see both unaffected and
affected children would be if Marfan’s is inherited as a dominant trait (see below).

1 2 

1 2  

1  2 

2 

1 

Parental genotype  

Offspring  
genotypes1 2

1 2 2 2

2 2

2 2

2 2

2

2

2 2

Parental genotype

Offspring  
genotypes2 2

2 2 2 2

Marfan is inherited in a dominant fashion: 
Both parents are affected with Marfan’s and 
have genotypes (1,2). Through meiosis and 
fertilization, these two parents could 
produce offspring with genotypes (1,1), 
(1,2), and (2,2). Thus, we would expect only 
75% of their offspring to be affected with 
Marfan’s.

Marfan is inherited in a recessive fashion: 
Both parents are affected with Marfan’s and 
have genotypes (2,2). Through meiosis and 
fertilization, these two parents will produce 
only (2,2) offspring. Thus, all of their 
offspring will be affected with Marfan’s.

1 1
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four different things to explain and Mendel
didn’t see that.

Teacher OK, so Mendel’s model of simple dominance
isn’t going to be enough to explain this pattern
is it?

Chris Nope.

The students in this high school biology class are engaged in genetic in-
quiry: they are examining data and identifying patterns of inheritance for
various traits. They are also attempting to use a powerful causal model,
Mendel’s model of simple dominance, to explain the patterns they see. And
just as scientists do, they recognize the limitations of their model when it
simply cannot explain certain data patterns. These students are poised to
continue their inquiry in genetics by revising Mendel’s model such that
the resulting models will be able to explain a variety of inheritance pat-
terns, including the multiple allele/codominance pattern within the Healey
pedigree.

Multiple Examples in Different Contexts

Chapter 1 argues that learning new concepts with understanding re-
quires multiple opportunities to use those concepts in different contexts.
Our course is designed to provide those opportunities. Once the students
have represented and used the simple dominance model to explain phe-
nomena such as the inheritance of characteristics in peas and disease traits
in humans, they use the model to explain data they generate using the
software program Genetics Construction Kit or GCK.20  This program enables
students to manipulate populations of virtual organisms (usually fruit flies)
by performing matings (or crosses) on any individuals selected. Each cross
produces a new generation of organisms whose variations for particular
traits (e.g., eye color, wing shape) are described. Thus, the students develop
expertise using the simple dominance model to explain new data, and they
also design and perform crosses to test their initial genotype-to-phenotype
mappings within these populations.

The beginning of this process is illustrated in Figure 12-4, which shows
an excerpt from one student’s work with GCK and the simple dominance
model. After the student’s model is discussed, the teacher presents or revisits
phenomena that the simple dominance model cannot explain. For example,
students realize when applying the model to explain their human pedigrees
that it is inadequate in some cases: it cannot account for the inheritance of
human blood types or achondroplasia. The next step for the class is to study
these “anomalous” inheritance patterns using GCK. They begin with achon-
droplasia, a trait for which there are three variations rather than two. Stu-
dents revise the simple dominance model to account for the codominant
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Field Population

F1: Cross a female Flared Short with a male Flared Long from the Field Population

F2: Cross two Narrow Short individuals from F1

F2: Cross two Flared Long individuals from F1

F3: Cross a Flared Short male with a Flared Long female from F2

So we can only tell that there is one variation for 
ears but two for coat length.  Another variation for 
ears might show up.

Since a Flared was crossed with another Flared, 
and the result was both Flared and Narrow, Flared 
must be dominant since it carried alleles for both 
variations.  Both Flared parents must have been 
(1,2) for both variations to show.  I can’t tell if Long 
or Short is dominant but one of them must be 
recessive, a (2,2), and the other parent must have 
been a (1,2) in order to get a mix of both Long 
and Short in the kids.

Both Narrow and Short must be recessive.  I already 
determined that Flared was dominant, so crossing 
two Narrow and getting all Narrows confirms that 
their parents were (2,2) because if Short was 
dominant the parents would have been both (1,2)’s, 
given their heritage.  So the only way to get all Short 
would be to cross 2 (2,2)’s.

The parent Flareds must have been either both 
(1,1)’s or a (1,1) and a (1,2) in order to get all 
Flareds.  The Short is a (2,2) and the Long must 
have been a (1,1) in order to get all Longs.  The 
children Longs must be all (1,2)’s.

Again, the Flareds must have been both (1,1)’s or 
(1,1) and (1,2) in order to get all Flareds.  The Short 
is a (2,2), and the Long must  have been a (1,1) in 
order to get all Longs.  The children Longs must be 
all (1,2)’s.

What might the offspring phenotypes be if 
you were to cross a Flared-eared, Long-coat 
individual from Vial 5 with a Flared-eared, 
Short-coat individual from Vial 2?  Describe 
the genetic reasoning behind your answer.

The offspring will either be all Flared, if the parents 
are (1,1) and (1,1) or (1,2) and (1,1) or there will be 
a mix Flared and Narrow if the parents are (1,2) and 
(1,2).  Since the Longs in Vial 5 are all (1,2), when 
they are crossed with a Short, the offspring will be 
both Long and Short.

FIGURE 12-4 Example of student work on a GCK homework assignment. Students were asked
to infer as much as possible from each successive cross within this population. The student’s
work is shown to the right of each cross.
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inheritance pattern observed for this trait. While solving GCK problems such
as this, students propose models that specify some or all of the information
(a through d) noted above and then test their models for fit with existing
data, as well as for the ability to predict the results of new experiments
accurately.

Since most students ultimately explain the inheritance of achondropla-
sia using a codominant model (whereby each possible genotype maps to a
distinct phenotype), they must also revise their understanding of dominance
and recessiveness. Up to this point, most students tend to associate reces-
siveness with either (1) a phenotype, (2) any genotype that contains a reces-
sive allele (designated with the number 2), or (3) both. It is quite common
for students to conclude that the phenotypes associated with (1,1) and (1,2)
genotypes are both “recessive. ”21 However, this conclusion is inconsistent
with the students’ prior concept of recessiveness as it was developed under
the simple dominance model. Thus, it is at this point in the unit that we
emphasize the need for models to be consistent with other knowledge in a
scientific discipline. In other words, geneticists must assess a new inherit-
ance model in part on the basis of how well it fits within an existing family
of related models, such as those for meiosis (including cytological data) and
molecular biology (which specifies the relationships between DNA and pro-
teins, as well as protein actions in cells). After explicit instruction about DNA
transcription, translation, and protein function, students attempt to reconcile
their codominance models with this new model of protein action in cells. In
the case of codominance, doing so requires them to conceptualize reces-
siveness at the level of alleles and their relationships to one another, rather
than at the level of phenotypes or genotypes.22 In the process, students con-
struct meanings for dominance and recessiveness that are consistent across
various inheritance models (e.g., simple dominance, codominance, multiple
alleles, etc.), as well as models of meiosis and molecular biology.

For the final GCK inquiry, the students are organized into two research
teams, each of which consists of four small research groups. Each team is
assigned a population of virtual fruit flies and told to explain the inherit-
ance of four traits within this population (see Figure 12-5). The work is
divided such that each research group studies two of the traits. Conse-
quently, there is some overlap of trait assignments among the groups within
a team. The teams hold research meetings periodically, and a minimal struc-
ture for those meetings is imposed: two groups present some data and
tentative explanations of the data, one group moderates the meeting, and
one group records the proceedings. The roles of individual groups alter-
nate in successive meetings.

Each of the fly populations in this last problem contains traits that ex-
hibit the following inheritance patterns: (1) Mendelian simple dominance;
(2) codominance; (3) multiple alleles (specifically, three different alleles with
varying dominant/codominant relationships between pairs of alleles); and
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FIGURE 12-5 Initial GCK population for the final GCK inquiry.

(4) x-linkage. After about a week of data collection, model testing, and team
meetings, each small research group is usually able to describe a model of
inheritance for at least one of the traits in its population, and most groups
can describe inheritance models for both of the traits on which they chose to
focus. The entire class then gathers for a final conference during which
students create posters that summarize their research findings, take turns
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making formal presentations of their models, and critique their classmates’
models.

This high school biology curriculum is designed to give students oppor-
tunities to learn about genetic inquiry in part by providing them with realis-
tic experiences in conducting inquiry in the discipline. As a primary goal of
practicing scientists is to construct causal models to explain natural phenom-
ena, involving students in the construction of their own models is given
major emphasis in the classroom. The students work in groups structured
like scientific communities to develop, revise, and defend models for inher-
itance phenomena. The overall instructional goals include helping students
to understand mechanistic explanations for inheritance patterns in fruit flies
and humans, and to appreciate the degree to which scientists rely on empiri-
cal data as well as broader conceptual knowledge to assess models.

Metacognition: Engaging Students in Reflective
Scientific Practice

Ultimately, students need to learn to reflect on and judge their own
work rather than relying solely on assessments from others. Several early
studies of students’ GCK work in our genetics unit revealed that students
assessed their tentative models primarily on the basis of empirical rather
than conceptual criteria.23  Even when conceptual inconsistencies occurred
between the students’ proposed models and other models or biological knowl-
edge, their primary focus was usually on how well a given model could
explain the data at hand. They frequently had difficulty recognizing specific
inconsistencies between their models and meiosis or other biological knowl-
edge, such as the method of sex determination in humans. In some in-
stances, students recognized that their models were inconsistent with other
knowledge but were willing to overlook such inconsistencies when they
judged their models to have adequate explanatory power. (For example,
students sometimes proposed models to account for x-linkage inheritance
patterns wherein a male organism simply could never be heterozygous. They
gave no explanation consistent with independent assortment in meiosis for
this model.) Thus, students paid more attention to empirical than conceptual
issues and tended to value empirical power over conceptual consistency in
models when both criteria were brought to bear.

White and Frederiksen24 describe a middle school science curriculum
designed to teach students about the nature of inquiry generally and the role
of modeling in specific scientific inquiries. One aspect of the curriculum that
had a measurable effect on its success was the emphasis on students’ reflec-
tive (metacognitive) assessment. Following modeling activities, students were
asked to rate themselves and others in various categories, including “under-
standing the science,” “understanding the processes of inquiry,” “being sys-
tematic,” and “writing and communicating well.” Involving the students in
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BOX 12-4 Simple Dominance Homework Assignment

Students are asked to use Mendel’s simple dominance model to explain a realistic
data pattern. They are also asked to justify their reasoning explicitly, in a manner
similar to that in which they argue in support of their ideas in regular classroom
activities.

Inheritance of PKU in the Samsom Family

Kate 
  

Joe 
  

Anne 
  

Max 
  

Natalie 
  

Devon 
  

Ken 
  

Kimberly 
  

Ryan 
  

Donna 
 

Curtis 
  

1. Use Mendel’s simple dominance model to assign genotypes to the individu-
als in this pedigree.

2. Do the affected individuals in this pedigree show a dominant or recessive
variation of the trait? Pick two family groups (a group is one set of parents and their
offspring), and describe how those groups helped you make that decision.

3. Describe how you would convince another student who had no knowledge
of how PKU is inherited that you understand the inheritance of this trait. As the
student is not easily convinced, you must carefully show how the Mendel model
can be used to support your idea.

such an explicit evaluation task helped emphasize the importance of learn-
ing about inquiry and modeling in addition to learning how to do inquiry.

Our work in developing tasks for students is also predicated on the
importance of metacognitive reflection on the students’ part. Influenced by
our research in the genetics unit, we built into the curriculum more tasks
that require students to reflect upon, write about, and discuss conceptual
aspects of genetic modeling. These tasks include journal writing, written
self-assessments, homework assignments that require students to explain
their reasoning (see Box 12-4), and class presentations (both formal and
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informal). Most important, we created a complex problem involving several
different inheritance patterns and asked the students to account for these
new data while working in cooperative laboratory teams. As described above,
the regular team interactions required students to be critical of their own
thinking and that of others. Moreover, situating the study of these inherit-
ance patterns within the context of a single population of organisms helped
emphasize the need for each inheritance model to be basically consistent
with other models within genetics. We have found that in this new context,
students are more successful at proposing causal models and have a better
understanding of the conceptual nature of such scientific models.25

Summary

The structure of the genetics class that we have described reflects im-
portant aspects of scientific practice: students are engaged in an extended
inquiry into inheritance in which they collect data, seek patterns, and at-
tempt to explain those patterns using causal models. The models proposed
by students are also highly similar to those of practicing geneticists in that
they specify allelic relationships and genotype-to-phenotype mappings for
particular traits. In the next section, we describe a course in evolutionary
biology that provides opportunities for students to participate in realistic
inquiry within another subdiscipline of biology.

DEVELOPING DARWIN’S MODEL OF NATURAL
SELECTION IN HIGH SCHOOL EVOLUTION

Hillary and Jerome are sitting next to each other in their sixth-hour
science class waiting for the bell to ring.

Jerome What are we doing in here today?

Hillary I think we will be starting the next case study.

The bell rings, and their teacher announces that the class will start work
on the last of three case studies designed to allow the students to continue
to develop and use Darwin’s model of natural selection. She tells the stu-
dents that there are two parts to this third case. First, they will need to use
their knowledge of the natural selection model to develop an explanation
for the bright coloration of the male ring-necked pheasant. Second, they will
have to write a research proposal that will then be considered by the rest of
the students in a research grant competition.

Teacher Each of you has seen during the past two
cases that there are aspects of your explana-
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tion that you would like to explore further or
confirm in some way. This is your opportunity
to imagine how you might do that. Each group
will need to think about their explanation and
identify areas that could use a bit more
evidence.

As the teacher passes out the eight pages of case materials, she asks the
students to get to work. Each group receives a file folder containing the task
description and information about the ring-necked pheasant. There are color
pictures that show adult males, adult females, and young. Some of the pages
contain information about predators, mating behavior, and mating success.
Hillary, Jerome, and their third group member, Grace, begin to shuffle through
the pages in the folder.

Hillary The males look completely different from the
females!

Jerome Okay, so what are we supposed to be doing
here?

Grace It is similar to the last case. We need to come
up with a Darwinian explanation for why the
males look brighter than the females.

Hillary How can this be? It seems like being bright
would be a problem for the males, so how can
it fit with Darwin’s ideas?

Grace Well, I guess we need to look at the rest of the
stuff in the folder.

The three students spend the remainder of the period looking over and
discussing various aspects of the case. By the middle of the period on Tues-
day, this group is just finalizing their explanation when Casey, a member of
another group, asks if she can talk to them.

Casey What have you guys come up with? Our group
was wondering if we could talk over our ideas
with you.

Grace Sure, come over and we can each read our
explanations.

These two groups have very different explanations. Hillary’s group is
thinking that the males’ bright coloration distracts predators from the nest,
while Casey’s group has decided that the bright coloration confers an advan-
tage on the males by helping them attract more mates. A lively discussion
ensues.
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Ed But wait, I don’t understand. How can dying be
a good thing?

Jerome Well, you have to think beyond just survival of
the male himself. We think that the key is the
survival of the kids. If the male can protect his
young and give them a better chance of
surviving then he has an advantage.

Claire Even if he dies doing it?

Grace Yeah, because he will have already passed on
his genes and stuff to his kids before he dies.

Casey How did you come up with this? Did you see
something in the packets that we didn’t see?

Grace One reason we thought of it had to do with the
last case with the monarchs and viceroy.

Hillary Yeah, we were thinking that the advantage isn’t
always obvious and sometimes what is good
for the whole group might not seem like it is
good for one bird or butterfly or whatever.

Jerome We also looked at the data in our packets on
the number of offspring fathered by brighter
versus duller males. We saw that the brighter
males had a longer bar.

Grace See, look on page 5, right here.

Jerome So they had more kids, right?

Casey We saw that table too, but we thought that it
could back up our idea that the brighter males
were able to attract more females as mates.

The groups agree to disagree on their interpretation of this piece of data and
continue to compare their explanations on other points.

The students in the above vignette are using Darwin’s model of natural
selection and realistic data to create arguments about evolution in a popula-
tion of organisms. In doing so, they attend to and discuss such ideas as
selective advantage and reproductive success that are core components of
the Darwinian model. Early in the course, students have opportunities to
learn about natural selection, but as the course progresses, they are re-
quired to use their understanding to develop explanations (as illustrated in
the vignette). As was true in teaching genetics, our goals for student learning
include both deep understanding of evolution and an understanding of how
knowledge in evolution is generated and justified. And once again we want
students to be able to use their understanding to engage in scientific in-
quiry—to construct their own Darwinian explanations.
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There is an important difference between the two units, however, that
motivated the decision to include both in this chapter. The nature of the
scientific inquiry involved in the study of evolution is different from that
involved in the study of genetics—or in some other scientific disciplines for
that matter. The difference arises because of the important role that history
plays in evolution and the inability of biologists to “replay the tape of the
earth’s history.” Engaging students in authentic inquiry therefore presents a
new set of challenges. Mayr26  suggests that “there is probably no more origi-
nal, more complex, and bolder concept in the history of ideas than Darwin’s
mechanistic explanation of adaptation.” Our teacher/researcher collabora-
tive took on the challenge of designing a course that would allow students
to master this powerful concept and to use it in ways that are analogous to
those of evolutionary biologists.

Attending to Significant Disciplinary Knowledge

The choices we make when designing curricula are determined in part
by an examination of the discipline under study. In the case of evolution, it
is clear that a solid understanding of natural selection provides a foundation
upon which further knowledge depends—the knowledge-centered concep-
tual framework referred to in the principles of How People Learn (see Chap-
ter 1). But that foundation is hard won and takes time to develop because
the concepts that make up the natural selection model are difficult for stu-
dents to understand and apply. To understand natural selection, students
must understand the concept of random variation. They must understand
that while some differences are insignificant, others confer an advantage or
a disadvantage under certain conditions. The length of a finch’s beak, for
example, may give it access to a type of food that allows it to survive a
drought. Survivors produce offspring, passing their genes along to the next
generation. In this way, nature “selects” for particular characteristics within
species.

Equally important in our instructional approach is that students under-
stand how Darwinian explanations are generated and justified. Kitcher27

describes a Darwinian history as a “narrative which traces the successive
modifications of a lineage of organisms from generation to generation in
terms of various factors, most notably that of natural selection.” The use of
narrative explanation is a key means of distinguishing evolutionary biology
from other scientific disciplines. “Narratives fix events along a temporal di-
mension, so that prior events are understood to have given rise to subse-
quent events and thereby explain them.”28  Thus, our concept of a Darwinian
explanation draws together the components of the natural selection model
and a narrative structure that demands attention to historical contingency.
Textbook examples of explanations for particular traits frequently take the
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form of “state explanations”—that is, they explain the present function of
particular character states without reference to their history.29  In contrast,
what we call a Darwinian explanation attempts to explain an event or how
a trait might have come into being. This type of explanation is summarized
by Mayr:30

When a biologist tries to answer a question about a unique
occurrence such as “Why are there no hummingbirds in the
Old World?” or “Where did the species Homo sapiens
originate?” he cannot rely on universal laws. The biologist
has to study all the known facts relating to the particular
problem, infer all sorts of consequences from the recon-
structed constellation of factors, and then attempt to
construct a scenario that would explain the observed facts in
this particular case. In other words, he constructs a historical
narrative.

Providing opportunities for students to use the natural selection model to
develop narrative explanations that are consistent with the view described
above is a central goal of the course.

Attending to Student Knowledge

Anyone who has ever taught evolution can attest to the fact that stu-
dents bring a wide range of conceptions and attitudes to the classroom.
During the past two decades, researchers have documented student ideas
both before and after instruction.31  These studies have confirmed what teachers
already know: students have very tenacious misconceptions about the mecha-
nism of evolution and its assumptions.

As Mayr suggests, the scientific method employed by evolutionary bi-
ologists in some respects resembles history more than it does other natural
sciences. This resemblance can be problematic. In disciplines such as his-
tory, for example, we look for motivations. While students may struggle to
understand that in different times and under different circumstances, the
motivations of others may be different from our motivations today, motiva-
tion itself is a legitimate subject for inquiry. But in the Darwinian model,
naturally occurring, random variation within species allows some individu-
als to survive the forces of nature in larger numbers. The random nature of
the variation, the role of natural phenomena in selecting who flourishes and
who withers, and the absence of motivation or intent make Darwinian nar-
rative antithetical to much of the literary or historical narrative that students
encounter outside the science classroom.

We have found that replacing this familiar approach to constructing a
narrative with the scientific approach used in evolutionary biology requires
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a significant period of time and multiple opportunities to try out the Darwin-
ian model in different contexts. Many courses or units in evolutionary biol-
ogy at the high school level require far shorter periods of time than the 9
weeks described here and also include additional sophisticated concepts,
such as genetic drift and speciation. With a large number of concepts being
covered in a short period of time, however, the likelihood that students will
develop a deep understanding of any concept is diminished; a survey of
content is not sufficient to support the required conceptual change.

In the next section, we highlight key instructional activities that we have
developed over time to support students in acquiring an understanding of
evolution and an ability to engage in evolutionary inquiry.

Instruction

The three principles of How People Learn are interwoven in the design
of the instructional activities that make up the course in evolutionary biol-
ogy. For example, the related set of concepts that we consider to be central
to students’ understanding (Principle 2) was expanded when we realized
that students’ preconceptions (about variation, for example) or weak foun-
dational knowledge (about drawing inferences and developing arguments)
served as barriers to learning. Instructional activities designed to support
students’ ability to draw inferences and make arguments at the same time
strengthen their metacognitive abilities. All three principles are tightly wo-
ven in the instruction described below.

Laying the Groundwork

Constructing and defending Darwinian explanations involves drawing
inferences and developing arguments from observed patterns in data. In
early versions of the course, we found that students’ ability to draw infer-
ences was relatively weak, as was their ability to critique particular argu-
ments. Our course has since been modified to provide opportunities for
students to develop a common framework for making and critiquing argu-
ments. As with the black box activity at the beginning of the genetics course,
we use a cartoon sequencing activity that does not introduce course content,
thus allowing students to focus more fully on drawing inferences and devel-
oping arguments.

Students are given a set of 13 cartoon frames (see Box 12-5) that have
been placed in random order. Their task is to work with their group to
reconstruct a story using the information they can glean from the images.
Students are enthusiastic about this task as they imagine how the images
relate to one another and how they can all be tied together in a coherent
story. The whole class then assembles to compare stories and discuss how
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BOX 12-5 Cartoon Sequencing Activity

Below are the differing interpretations and sequencing of the same cartoon images by two different

groups of students.  There are images in the complete set that the students worked with for this

activity.  The 13 images are given to the students in random order, and the students are asked to

create narrative stories.

Group One

1 2

3

ÒWe think that in this first frame little red riding hood is telling the pigs that she is going to

visit her sick grandmother. In the second scene, the pigs are telling the wolf about little red

riding hood and her sick grandmother and showing him which way she went. In the next

frame, the pigs see that the grandmother is tied up in the woods and they feel bad that they

gave the wolf the information earlier.Ó
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Group Two

1 2

3

“The pigs have discovered grandma tied up in the woods and they try to throw the wolf off

the track by telling him that he must get away before the hunter comes. In the last frame,

little red riding hood is thanking the pigs for saving the grandmother and they feel

bashful.”



548 HOW STUDENTS LEARN: SCIENCE IN THE CLASSROOM

decisions were made. The sequences presented by different groups usually
vary quite a bit (see Box 12-5 for two examples). This variation provides a
context for discussing how inferences are drawn.

The initial discussion centers on students’ observations about the im-
ages. However, it quickly becomes apparent that each person does not place
the same importance on specific observations and that even though groups
may have observed the same thing, they may not have made the same
decisions about the order of the cards. What ensues is a conversation about
considerations that entered into the students’ decision making. Students re-
alize that they are all examining the same images (the data), but that each
also brings a lifetime of experience with cartoons and stories to the table.
Together the students establish that the process of drawing inferences about
the order of the cards is influenced by both what they observe (the data) and
their own prior knowledge and beliefs. This notion is then generalized, and
students see that all inferences can be thought of as having these two bases.
They discuss how scientific arguments are usually a collection of several
inferences, all of which are dependent on data and prior knowledge and
beliefs. The teacher supports this discussion by pointing out examples of
fruitful questioning and encouraging the students to think about what it
means to foster a community in which communication about important ideas
is expected.

In addition to introducing general norms for classrooms in which scien-
tific argumentation is central, the cartoon activity serves to orient students to
a framework for critiquing arguments in evolution. At one level, this frame-
work is common to all science disciplines. In this capacity, the emphasis is
on the importance of being explicit about how prior knowledge and beliefs
influence the inferences drawn from particular data. At this general level, the
activity is linked to the common MUSE framework of models and modeling
as the teacher connects the ideas concerning inferences to those concerning
models. The teacher does this by explaining that a causal model is an idea
that is used to create explanations for some set of phenomena and that
models are based on several inferences. Students then read some material
on models and as a class discuss the ways in which models can be assessed.
Through examples in the reading and from their own experience, the group
settles on criteria for judging models: explanatory power and consistency
with other knowledge. Note that, in contrast with the genetics course, there
is no mention of predictive adequacy here as a major assessment criterion
because explanation is much more central than prediction in the evolution
course. This is one example of the assertion we have made previously:
disciplines do rely on differing methods for making and evaluating claims.
The demonstrative inference that is common in the genetics course gives
way to a greater reliance on nondemonstrative inference in the evolution
course. This occurs as students create Darwinian explanations. Such expla-
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nations, with their characteristic narrative structure, are developed to make
sense out of the diverse data (structural and behavioral characteristics of
organisms, patterns in their molecular biology, patterns of distribution in
both time and geography, and so on) that are characteristic of evolutionary
argumentation.

A second evolution-specific function served by the cartoon activity is to
introduce students to one of the more important undertakings of evolution-
ary biologists—the reconstruction of past events (the development of a trait,
such as the vertebrate eye, or the speciation events that led to the “tree of
life”). Such historical reconstructions do not have close analogues in genetic
inquiry.

A second instructional component was added to the course when we
observed students’ difficulties in understanding the concept of variation.
These difficulties have been documented in the literature,32 and we have
encountered them in our own classrooms. Because of the experiences stu-
dents have with variability in most genetics instruction—in which they usu-
ally examine traits with discrete variations—the concept of continuous varia-
tion can be a significant challenge for them. We have seen that an incomplete
understanding of variation in populations promotes students’ ideas that ad-
aptations are a result of a single dramatic mutation and that selection is an
all-or-none event operating on one of two to three possible phenotypes.
Recognition of these problems has led us to incorporate explicit instruction
on variability in populations and, perhaps more important, to provide op-
portunities for students to examine and characterize the variability present
in real organisms before they begin using the concept in constructing Dar-
winian explanations.

One of the activities used for this purpose is a relatively simple one, but
it provides a powerful visual representation on which students can draw
later when thinking about variation in populations. Typically, students do
not recognize the wide range of variation that is present even in familiar
organisms. To give them experience in thinking about and characterizing
variation, we have them examine sunflower seeds. Their task is to count the
stripes on a small sample of seeds (but even this simple direction is less than
straightforward since the class must then negotiate such matters as what
counts as a stripe and whether to count one side or two).

Once they have come up with common criteria and have sorted their
sample into small piles, the teacher has them place their seeds into corre-
spondingly numbered test tubes. The result, once the test tubes have been
lined up in a row, is a clear visual representation of a normal distribution.
The subsequent discussion centers on ways to describe distributions using
such concepts as mean, median, and mode. This activity takes place before
students need to draw on their understanding of variation to construct ex-
planations using the natural selection model.
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Understanding the Darwinian Model

The second major section of the course engages students in examining
three historical models that account for species’ adaptation and diversity.
The students must draw on the framework established during the cartoon
activity to accomplish this comparison. This means that as they examine
each argument, they also identify the major inferences drawn and the data
and prior knowledge and beliefs that formed the basis for those inferences.
The three models are (1) William Paley’s model of intelligent design, which
asserts that all organisms were made perfectly for their function by an intel-
ligent creator; (2) Jean Baptiste de Lamarck’s model of acquired characteris-
tics, which is based on a view that adaptations can result from the use or
disuse of body parts and that changes accumulated during an organism’s
lifetime will be passed on to offspring; and (3) Darwin’s model of natural
selection. The models of Paley and Lamarck were chosen because each
represents some of the common ideas students bring with them to the class-
room. Specifically, it is clear that many students attribute evolutionary change
to the needs of an organism and believe that extended exposure to particu-
lar environments will result in lasting morphological change. Many students
are also confused about the role of supernatural forces in evolution. Darwin’s
model is included in the analysis so students can see how the underlying
assumptions of his model compare with those of the Paley and Lamarck
models.

For students to compare the prior knowledge and beliefs of the authors,
however, they must first become familiar with the models. To this end, each
model is examined in turn, and students are discouraged from making com-
parisons until each model has been fully explored. All three models are
presented in the same way. Students read edited selections of the author’s
original writing, answer questions about the reading, and participate in a
class discussion in which the proposed explanation for species diversity and
adaptation is clarified and elaborated. In the following example, Claire and
Casey are working with Hillary in a group during class. They are trying to
analyze and understand an excerpt of original writing by Lamarck. Hillary is
looking over the discussion questions:

Hillary It seems like Lamarck did think that species
changed over time, so I can see that as an
underlying assumption of his, but I’m having a
hard time figuring out how he thought that
happened.

Casey I agree, he is definitely different from Paley
who didn’t think things had changed at all.

Claire But how did the change happen? It seems like
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Lamarck puts it on the organisms themselves,
that they try to change.

Hillary I’m not sure what you mean.

Claire Well, he talks a lot about the usefulness of
particular traits for an animal and about
repeated use of a body part causing a change.

Students are also given an opportunity to explore the natural phenom-
ena or data that served as an inspiration for each author: they examine
fossils as discussed by Lamarck, dissect an eye to examine the structure/
function relationships that so fascinated Paley, and are visited by a pigeon
breeder who brings several of the pigeon varieties that Darwin described in
his Origin of Species. Once students have developed an understanding of the
explanation that each author proposed and some familiarity with the obser-
vations on which it was based, they examine the readings again to identify
the prior knowledge and beliefs that each author may have held.

Following this discussion, the students compare the three models. First,
they assess the explanatory power of the models, using each to explain
phenomena other than those described in the original writings. For example,
they attempt to use Paley’s model to explain the presence of fossils and
Lamarck’s model to explain the structure of the eye. Sometimes the model
can easily account for new phenomena; Lamarck’s model of use inheritance,
for example, is easily adapted to explaining the diversity of pigeon varieties.
In other instances, the students recognize the limitations of the model; Paley’s
model, for instance, cannot easily account for the presence of fossils or
extinct organisms. The students then compare the underlying assumptions
or beliefs of the authors. Even if a model can account for diverse phenom-
ena on its own terms, it is still necessary to examine and critique the under-
lying assumptions. Many students question the necessity of the supernatural
force underlying Paley’s model, and still more find the role of need to be a
questionable assumption in Lamarck’s model.

These explicit discussions of some of the major views students bring to
the study of evolution lay the groundwork for the future use and extension
of Darwin’s model. Comparing the assumptions of the three models enables
students to distinguish between those beliefs that underlie the model of
natural selection and those that do not. Unlike some classroom contexts,
however, in which it is the students’ ideas that are laid bare and examined
for inconsistencies, here we have developed a situation in which students’
ideas are represented by the models of Paley and Lamarck. We have found
that through this approach, students are willing to attend to the differences
between ideas rather than spending their time and energy being defensive;
because they do not feel that their own ideas are being criticized, the discus-
sions are fruitful.
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These two activities foster a classroom community that operates from a
common set of commitments. For our purposes, the most important of these
is that Darwin proposed a naturalistic mechanism of species change that acts
on variation among individuals within a species and that assumptions of
supernatural influence and individual need are not a part of his model.
Keeping this distinction in mind while using the natural selection model
later in the course enables students to avoid some common misconceptions,
or at least makes identification of those misconceptions more straightfor-
ward. For example, when students use the natural selection model to ex-
plain the bright coloration of the monarch butterfly, they often challenge
each other when need-based or Lamarckian language is used.

Using the Darwinian Model

During the final weeks of the course, students are engaged in creating
Darwinian explanations using the components of the natural selection model
to make sense of realistic data they have been given. Each scenario is pre-
sented to the students as a case study, and they are given materials that
describe the natural history of the organism. Photographs, habitat and predator
information, mating behavior and success, and phylogenetic data are ex-
amples of the types of information that may be included in a given case.
Students then weave the information into a narrative that must take into
account all of the components of a natural selection model and describe the
change over time that may have occurred (see Box 12-6 for one group’s
Darwinian explanation). As students hone their abilities to develop and as-
sess evolutionary arguments over three successive case studies, they are
able to participate in realistic evolutionary inquiry.

In the first case study, students develop a Darwinian explanation for
differences in seed coat characteristics among populations of a hypothetical
plant species. The second case study involves explaining the bright, and
similar, coloration of monarch and viceroy butterflies. The final case re-
quires that students develop an explanation for how the sexual dimorphism
exhibited by ring-necked pheasants might have arisen.

During each case study, the time is structured so that a group will con-
sult with at least one other group as they develop their explanations. This
task organization reinforces the nature of argumentation in evolutionary bi-
ology, as it includes the expectation that students will attend to the central
feature of any Darwinian explanation—that it have a historical component.
But it is not enough to just have a history. In tracing the possible historical
development of a trait, students must weave a complex story that draws on
available data, as well as their understanding of an array of biological mod-
els (e.g., genetic models), to explain the role of heritable variation,
superfecundity, competition, and agents of selection. Within their research
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BOX 12-6 Darwinian Explanation Written by a Group of Students at the End
of the Monarch/Viceroy Case

Monarchs and viceroys are very similar in appearance, although this has not al-
ways been true. The brightness in both butterflies is viewed as an advantage in
their environment—where a main predator is the blue jay—an advantage that may
be explained by the Darwinian model.

Each butterfly lays many more eggs than can survive on the limited resources
in its environment. As a result of this limit, there is a struggle among the offspring
for survival. As within all species, there exists natural variation among the popula-
tions of monarchs and viceroys, including variations of color. In the past popula-
tions, some butterflies were brightly colored and others were dull. Blue jays, a
main predator of the monarch, rely on movement and coloration to identify their
prey when hunting. They can vomit up bad-tasting or poisonous food, and exhibit
an ability to learn to avoid such food in the future.

As caterpillars, monarchs have as a source of food milkweed leaves, which
contain cardenolides—poisonous or unpalatable substances. As the larva are grow-
ing, they ingest a large amount of cardenolides. When they become butterflies,
these substances remain in their bodies, making them unpalatable to their preda-
tors.

When blue jays eat monarchs, they react to the cardenolides by vomiting up
their prey. They learn from this experience that they should avoid the brightly col-
ored monarchs to avoid the cardenolides. The dull monarchs, although poisonous,
were still consumed by their predators more because they more closely resembled
nonpoisonous prey such as moths, grasshoppers, and lacewings. The brightly col-
ored monarchs survived more than the dull ones and were more prolific. After
many generations, most monarchs were bright because of their success in the
environment. Because of the blue jays’ association of bright colors with bad food,
the brightly colored viceroys, although not poisonous like the monarch, were also
avoided, and this advantageous variation was passed on as with the monarch.

groups, meetings between research groups, and whole-class discussions,
students question one another using a variety of sophisticated stances. These
include ensuring that there is consistency among the data, the natural selec-
tion model, and claims; that the history of the shift in a trait is feasible (i.e.,
consistent with genetics); and that the proposed selection agent could have
brought about the change in the trait between times 1 and 2. The students
question one another to ensure that their explanations are both internally
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and externally consistent. In so doing, they normally propose more than a
single explanation, thus recognizing that, in evolution at least, it is important
to consider multiple interpretations. As they examine competing Darwinian
explanations for the same phenomena, they invoke an evolution-specific
argument-analysis norm—that the explanation of the history of a trait has to
be consistent with the natural selection model. For example, the second
case requires students to provide a Darwinian explanation for the similarity
in color between the monarch and viceroy butterflies. Frequently students
will say such things as “the viceroy needs to look like the monarch so that
the birds won’t eat it.” When statements such as these are made, other stu-
dents will often challenge the speaker to use Darwinian rather than Lamarck-
ian language. The work on the cases allows students to practice using the
Darwinian model in appropriate ways, and the interactive nature of all of the
work in class affords them opportunities to think explicitly about and de-
fend their own ideas.

The culminating activities for each of the three cases require public
sharing of ideas in a forum where the expectation is that the presenting
groups and audience members will consider thoughtfully the ideas before
them. Each case has a different type of final presentation. The first case ends
with a poster session, the second with a roundtable discussion, and the last
with a research proposal and an oral presentation.

One particularly powerful experience students have occurs during the
final case study. For the first two case studies, students use their understand-
ing of the Darwinian model to account for the changes that may have oc-
curred in particular populations and to explicitly tie data from the case ma-
terials to their claims. For the final case study, they must construct a Darwinian
explanation for the sexual dimorphism observed between male and female
ring-necked pheasants, and in addition, they must produce a research pro-
posal to shed light on their explanation. Typically, students choose to focus
their research proposal on a single aspect of their explanation. This activity
requires that they think carefully about the components of their explanation
and the confidence they place in each of those components. Thus in this
instance they are not evaluating the entire explanation as a single entity, but
are considering each part in relation to the others. Once they have decided
on a research proposal, they must determine how their proposed research
would strengthen their argument. Being able to examine an argument as a
whole and according to its parts is an important skill that this task helps
develop. This case also stimulates interesting conversations among groups.
The nonpresenting groups act as a proposal review panel and interact with
the presenting groups in an attempt to understand the proposal. Once all
groups have presented, the students discuss the merits and shortcomings of
each proposal and then decide individually which proposal should be funded.
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CLASSROOM ENVIRONMENTS THAT SUPPORT
LEARNING WITH UNDERSTANDING

We have found that much of what students learn in genetics and evolu-
tionary biology units grounded in model-based inquiry depends on their
active and thoughtful participation in the classroom community.33  To learn
about the process of modeling and about discipline-specific patterns of ar-
gumentation, students must be critically aware of the elements that influ-
ence their own knowledge generation and justification. The MUSE curricula
are designed to facilitate this type of student thinking through explicit dis-
cussion of students’ expectations for engaging in argumentation, the design
of student tasks, and the use of various tools for interacting with and rep-
resenting abstract concepts.

Knowledge-Centered

By the end of our courses, students are able to reason in sophisticated
ways about inheritance patterns and about evolutionary phenomena. Realiz-
ing that goal, we believe, is due in large measure to careful attention to the
core disciplinary knowledge, as well as persistent attention to students’ pre-
conceptions and the supports required for effective conceptual change. The
instructional activities we have described highlight a classroom environment
that is knowledge-centered in putting both the core concepts and scientific
approaches to generating and justifying those concepts at the center of in-
struction.

Learner-Centered

The classrooms are also learner-centered in several respects. The cur-
riculum was designed to address existing conceptions that we had observed
were creating problems for students as they tried to master new material. We
also identified weaknesses in students’ knowledge base—such as their un-
derstanding of models and their ability to draw inferences and develop argu-
ments—and designed activities to strengthen those competencies. The use
of frequent dialogue in our courses allows an attentive teacher to continu-
ously monitor students’ developing thinking.

Assessment-Centered

We have attempted to embed formative and authentic assessments
throughout our courses. Assessment of student understanding needs to be
undertaken with an eye to the various types of prior knowledge described
above (misconceptions of science concepts, ideas about what science is,
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and the extent to which students’ knowledge is integrated). We have seen,
time and again, teachers becoming aware of students’ common struggles
and beginning to “hear” their own students differently. Thus, an important
feature of instructional activities that give students opportunities to make
their thinking and knowledge public and therefore visible to teachers is that
they make assessment and instruction seamless. This becomes possible when
students articulate the process of arriving at a solution and not simply the
solution itself.

Because students struggle with conceptual problems in the genetics unit,
for example, we incorporate a number of assessments that require them to
describe the relationships between models or ideas that they have learned
(see Box 12-7). Whenever possible, we design formal assessments as well as
written classroom tasks that reflect the structure of students’ work in the
classroom. Our students spend a great deal of their class time working in
groups, pouring over data, and talking with one another about their ideas.
Thus, assessments also require them to look at data, propose explanations,
and describe the thinking that led to particular conclusions.

In the evolution course, students are required during instruction to use
the natural selection model to develop Darwinian explanations that account
for rich data sets. To then ask them about data or the components of natural
selection in a multiple-choice format that would require them to draw on
only bits and pieces of knowledge for any one question appears incomplete
at best. Instead, we provide them with novel data and ask them to describe
their reasoning about those data using the natural selection model—a task
analogous to what they have been doing in class. An instance of this type of
assessment on the final exam asks students to write a Darwinian explanation
for the color of polar bear fur using information about ancestral populations.
In this way, during assessment we draw on students’ ideas and skills as they
were developed in class rather than asking students to simply recall bits of
information in contrived testing situations.

While assessments provide teachers with information about student un-
derstanding, students also benefit from assessments that give them opportu-
nities to see how their understanding has changed during a unit of study.
One method we have used is to require each student to critique her or his
own early work based on what she or he knows at the conclusion of a
course. Not only does this approach give teachers insights into students’
knowledge, but it also allows students to glimpse how much their knowl-
edge and their ability to critique arguments have changed. Students’ consid-
eration of their own ideas has been incorporated into the assessment tasks
in both units. On several occasions and in different ways, students examine
their own ideas and explicitly discuss how those ideas have changed. For
example, one of the questions on the final exam in evolution requires stu-
dents to read and critique a Darwinian explanation they created on the first
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BOX 12-7 Sample Exam Question: Consistency Between Models

This exam question is one of several tasks designed to produce evidence of stu-
dents’ understandings about the need for models to be consistent with one an-
other and with the data they purport to explain.

Below is a concept map that represents the relationships among
specific models, models in general, and data. Use the map to
respond to the tasks below.

a. Remember that a line in a concept map represents a relationship
between two terms (concepts, ideas, etc.) in the map. Write a few
sentences that describe the numbered relationships between the
terms given. Be as specific as you can: use the appropriate vocabu-
lary of genetics to make your point as clearly as possible.

b. Draw a line (not necessarily a straight one) to separate the world
of ideas from that of observations on this map. Please label both
sides. Justify your placement of that line.

day of class (see Box 12-8). We have found this to be one of the most
powerful moments for many students, as they recognize how much their
own ideas have changed. Many students are critical of the need-based lan-
guage that was present in their original explanation, or they find that they
described evolutionary change as having happened at the individual rather
than the population level.
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BOX 12-8 Examples of Students’ Critiques of Their Own Darwinian
Explanations

On the first day of class, students were asked to explain how the carapace of
Galapagos tortoises may have changed from the dome shape to the saddleback
shape. As part of the final exam for the class, students were asked to critique the
explanation they had given on the first day. Below are the original explanation and
critique offered by one student.

Original Answer

The saddleback carapace came into being due to the need of
migrating tortoises to adjust to a new environment. On Albermarle
Island the domed shaped carapaces served well for shedding rain
and eating ground vegetation. However, when the tortoises began to
migrate to a smaller, drier island with less ground vegetation, they
had to adapt in order to survive. The majority of the food was now
higher up and the domed shell served as a hindrance. Over time, the
saddleback carapace developed to allow the neck to extend further,
thereby allowing the tortoises to reach the fleshy green parts of the
prickly pear cactus. This evolutionary process created a new species
of giant tortoise that could live successfully in a new environment.

Critique on Final Exam

In my original answer, I used an almost exclusive Lamarckian
definition of evolution. In my introductory statement I stated that the
saddleback carapace came into being due to the need of the tortoise
to fit its environment. I needed to acknowledge the existence of
variation within the tortoise population of the shape of the shell. My
original explanation makes the evolutionary process sound like a
physical change taking place during the life of the tortoise and then
being passed on to the offspring. I now know that variations that are
advantageous give animals a better chance of survival (survival of
the fittest!) and allow them a better chance of passing on their
advantageous trait to their offspring. In my original explanation I
also touched on ideas of use and disuse to explain how the
saddleback carapace came to be, this is a Lamarkian model of
evolution which is incorrect. I did explain how the saddleback
carapace was an advantage because it allowed the tortoise to eat
higher vegetation. Since I didn’t understand evolution through the
generations, I wasn’t able to describe how the species changed over
time. Overall, I would say I had a basic but flawed understanding of
evolution but I lacked the tools to explain evolution from a scientific
and Darwinian perspective, until now.
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Community-Centered

As Chapter 1 suggests, the knowledge-centered, learner-centered, and
assessment-centered classrooms come together in the context of a class-
room community. The culture of successful scientific communities includes
both collaboration and questioning among colleagues. It involves norms for
making and justifying claims. At the source of the productivity of such a
community is an understanding of central causal models, the ability to use
such models to conduct inquiry, and the ability to engage in the assessment
of causal models and related explanations. We have found that these out-
comes can be realized in classrooms where students are full participants in a
scientific community.34  Interestingly, one unexpected outcome of structur-
ing classrooms so that students are expected to participate in the intellectual
work of science has been increased involvement and achievement by stu-
dents not previously identified as successful in science.

In addition to establishing expectations for class participation and a
shared framework for knowledge assessment, MUSE curricula promote
metacognitive reflection on the part of students by incorporating tasks that
require discourse (formal and informal) at all stages of student work. While
working in groups and presenting results to the class as a whole, students
are required to share their ideas even when those ideas may not be fully
formed. Moreover, recall that the context for idea sharing is one in which
discipline-specific criteria for assessment of ideas have been established.
Thus, discourse is anchored in norms of argumentation that reflect scientific
practice to the extent possible.

Learning with Understanding

While the four features of classroom environments can be described
individually, in practice they must interact if students are to deeply engage
in learning for understanding. High school students have had more than 9
years of practice at playing the “game of school.” Most have become quite
adept at memorizing and reiterating information, seeking answers to ques-
tions or problems, and moving quickly from one topic to another. Typically
during the game of school, students win when they present the correct
answer. The process by which one determines the answer is irrelevant or, at
best, undervalued. The students described here are quite typical in this re-
gard: they enter our genetics and evolution classes anticipating that they will
be called upon to provide answers and are prepared to do so. In fact, seek-
ing an end product is so ingrained that even when we design tasks that
involve multiple iterations of modeling and testing ideas, such as within the
genetics course, students frequently reduce the work to seeking algorithms
that have predictive power instead of engaging in the much more difficult
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task of evaluating models on the basis of their conceptual consistency within
a family of related ideas.35

After studying how people solved problems in a variety of situations,
Klayman and Ha36 noted the frequent use of what they call a “positive test
strategy.” That is, solvers would propose a model (or solution) and test it by
attempting to apply it to the situation most likely to fit the model in the first
place. If the idea had explanatory or predictive power, the solver remained
satisfied with it; if not, the solver would quickly test another idea. The
positive test strategy was frequently applied by students in early versions of
our genetics course.37  This method of problem solving does not map well
to scientific practice in most cases, however: it is the absence of disproving
evidence, and not the presence of confirming evidence that is more com-
monly persuasive to scientists. Moreover, testing a model in limited situa-
tions in which one expects a data–model match would be considered “con-
firmation bias” within scientific communities. Nevertheless, Klayman and
Ha point out that this positive test strategy is often quite useful in real-life
situations.

Given our students’ facility with the game of school and the general
tendency to apply less scientific model-testing strategies when problem solv-
ing, we were forced to create tasks that not only afford the opportunity for
reflection, but actually require students to think more deeply about the ways
in which they have come to understand science concepts, as well as what is
involved in scientific argumentation. We want students to realize that the
models and explanations they propose are likely to be challenged and that
the conflicts surrounding such challenges are the lifeblood of science. Thus,
we explicitly discuss with our students the expectations for their participa-
tion in the course. Teachers state that the students’ task is not simply to
produce an “answer” (a model in genetics or a Darwinian explanation in
evolutionary biology), but also to be able to defend and critique ideas ac-
cording to the norms of a particular scientific discipline. In other words, we
ask the students to abandon the game of school and begin to play the game
of science.

Examination of ideas requires more than simply providing space for
reflection to occur; it also involves working with students to develop sys-
tematic ways of critiquing their own ideas and those of others. This is why
we begin each course with an activity whose focus is the introduction of
discipline-specific ways of generating and critiquing knowledge claims. These
activities do not require that students will come to understand any particular
scientific concepts upon their completion. Rather, they will have learned
about the process of constructing and evaluating arguments in genetics or
evolutionary biology. Specific criteria for weighing scientific explanations
are revisited throughout each course as students engage in extended inquir-
ies within these biological disciplines.
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SUMMARY
For students to develop understanding in any scientific discipline, teachers

and curriculum developers must attend to a set of complex and interrelated
components, including the nature of practice in particular scientific disci-
plines, students’ prior knowledge, and the establishment of a collaborative
environment that engages students in reflective scientific practice. These
design components allow educators to create curricula and instructional
materials that help students learn about science both as and by inquiry.

The students in the biology classrooms described in this chapter have
developed sophisticated understandings of some of the most central ex-
planatory frameworks in genetics and evolutionary biology. In addition, they
have, unlike many high school students, shown great maturity in their abili-
ties to reason about realistic biological data and phenomena using these
models. Moreover, they have accomplished this in classrooms that are struc-
tured along the lines of scientific communities. This has all been made pos-
sible by a concerted collaboration involving high school teachers and their
students, university science educators, and university biologists. That MUSE
combined this collaboration with a research program on student learning
and reasoning was essential. With the knowledge thus gained, we believe it
is possible to help others realize the expectations for improving science
education that are set forth in reform documents such as the National Sci-
ence Education Standards.38  In particular, there has been a call for curricu-
lar reforms that allow students to be “engaged in inquiry” that involves
“combin[ing] processes and scientific knowledge as they use scientific rea-
soning and critical thinking to develop their understanding of science.”39

Recommendations for improved teaching of science are solidly rooted in a
commitment to teaching both through and about inquiry. Furthermore, the
National Science Education Standards do not simply suggest that science
teachers incorporate inquiry in classrooms; rather, they demand that teach-
ers embrace inquiry in order to:

• Plan an inquiry-based science program for their students.
• Focus and support inquiries while interacting with students.
• Create a setting for student work that is flexible and supportive of

science inquiry.
• Model and emphasize the skills, attitudes, and values of scientific

inquiry.
It is just these opportunities that have been described in this chapter.
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NOTES
1. We encourage readers to visit our website (www.wcer.wisc.edu/ncusla/muse/).

The site includes discussions of student knowledge and reasoning, intended
learning outcomes, instructional activities, instructional notes, assessments,
examples of student work, teachers’ reflections, and connections to the Na-
tional Science Education Standards and Benchmarks for Science Literacy.

2. Wiggins and McTighe, 1998, Chapter 1.
3. Grosslight et al., 1991.
4. Grosslight et al., 1991; Harrison and Treagust, 1998.
5. Cartier, 2000a.
6. Cartier, 2000b.
7. We consider a causal model to be an idea or set of ideas that can be used to

explain particular natural phenomena. Models are complex constructions that
consist of conceptual objects (e.g., alleles, populations) and processes (e.g.,
selection, independent assortment) in which the objects participate or interact.

8. Cartier, 2000a; Kindfield, 1994; Wynne et al., 2001.
9. Kindfield, 1994.

10. Cartier, 2000a.
11. Cartier, 2000a; Wynne et al., 2001.
12. Cartier, 2000b.
13. Darden, 1991.
14. Meiosis is the process by which sperm and egg cells are formed. During meio-

sis, chromosomal replication is followed by two rounds of cell division. Thus,
one cell undergoing meiosis produces four new cells, each of which contains
half the number of chromosomes of the original parent cell.

15. Kitcher, 1984, 1993.
16. Kitcher, 1984, p. 356.
17. Kitcher, 1984, p. 356.
18. Mendel, 1959.
19. Discontinuous traits are those for which two or more distinct categories of

phenotypes (or variants) are identified. For example, Mendel studied the trait
of height in pea plants. He noted that the pea plants were either short (18 in.)
or tall (84 in.). In contrast, height is not a discontinuous trait in humans: hu-
man height is best characterized as continuously variable, or nondiscrete, be-
cause humans are not simply either 18 or 84 in. tall. Thus, the phenotype
categories for height in humans are not clear-cut.

20. Calley and Jungck, 2002.
21. Achondroplasia is inherited in a codominant fashion. Individuals with two

disease alleles (2,2) are severely dwarfed and seldom survive. Individuals who
are heterozygous (1,2) are achondroplastic dwarfs, having disproportionately
short arm and leg bones relative to their torsos. Thus while these two pheno-
types differ from normal stature, they are distinct from one another.

22. In the past, our students have developed the following explanations for pro-
tein action in traits inherited in a codominant fashion:
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• One allele (designated 1) codes for an active protein. The other allele
codes for an inactive protein. Thus, individuals with genotype (1,1) have the
greatest amount (or dose) of active protein and the associated phenotype at
the organismal level. Individuals who are (2,2) have little or no measurable
protein activity, and this is reflected in the phenotype. Heterozygous individu-
als (1,2) have an intermediate level of protein activity and a phenotype that is
also intermediate. For example, in the case of achondroplasia, (1,1) individu-
als would have two alleles for a growth receptor and a phenotype of normal
stature; (2,2) individuals would have few or no functional receptors and suffer
from severe growth retardation; and heterozygotes (1,2) would have half as
much growth receptor activity as the (1,1) individuals and consequently be
short-statured achondroplastic dwarves without the additional health prob-
lems of the (2,2) individuals. This example of codominance is admittedly sim-
plified, as students do not study the systemic effects of achondroplasia. How-
ever, this model is applied widely in genetics and sometimes referred to as the
“dosage” model.

• Both alleles code for active proteins, giving rise to observable pheno-
types at the macroscopic level. Heterozygotes display the phenotypes associ-
ated with both alleles. For example, in human blood types, individuals carry-
ing alleles for protein A and protein B have both of these proteins on their
blood cells. The phenotype is not blended or dosage dependent as in the
achondroplasia example above. Instead, both proteins are detected intact in
heterozygous individuals.

23. Cartier, 2000a, 2000b.
24. White and Frederiksen, 1998, p. 25.
25. Cartier 2000a, 2000b.
26. Mayr, 1982, p. 481.
27. Kitcher, 1993, pp. 20-21.
28. Richards, 1992, p. 23.
29. O’Hara, 1988.
30. Mayr, 1997, p. 64.
31. Bishop and Anderson, 1990; Demastes et al., 1992, 1995, 1996.
32. Bishop and Anderson, 1990.
33. Cartier, 2000a, 2000b; Passmore and Stewart, 2002.
34. Cartier, 2000b; Passmore and Stewart, 2000.
35. Cartier, 2000a.
36. Klayman and Ha, 1987.
37. Cartier, 2000a.
38. National Research Council, 1996.
39. National Research Council, 1996, p. 105.
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A FINAL SYNTHESIS:
REVISITING THE THREE LEARNING PRINCIPLES
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Pulling Threads
M. Suzanne Donovan and John D. Bransford

What ties the chapters of this volume together are the three principles
from How People Learn (set forth in Chapter 1) that each chapter takes as its
point of departure. The collection of chapters in a sense serves as a demon-
stration of the second principle: that a solid foundation of detailed knowl-
edge and clarity about the core concepts around which that knowledge is
organized are both required to support effective learning. The three prin-
ciples themselves are the core organizing concepts, and the chapter discus-
sions that place them in information-rich contexts give those concepts greater
meaning. After visiting multiple topics in history, math, and science, we are
now poised to use those discussions to explore further the three principles
of learning.

ENGAGING RESILIENT PRECONCEPTIONS
All of the chapters in this volume address common preconceptions that

students bring to the topic of focus. Principle one from How People Learn
suggests that those preconceptions must be engaged in the learning process,
and the chapters suggest strategies for doing so. Those strategies can be
grouped into three approaches that are likely to be applicable across a broad
range of topics.

1. Draw on knowledge and experiences that students commonly bring to the class-
room but are generally not activated with regard to the topic of study.
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This technique is employed by Lee, for example, in dealing with stu-
dents’ common conception that historical change happens as an event. He
points out that students bring to history class the everyday experience of
“nothing much happening” until an event changes things. Historians, on the
other hand, generally think of change in terms of the state of affairs. Change
in this sense may include, but is not equivalent to, the occurrence of events.
Yet students have many experiences in which things change gradually—
experiences in which “nothing happening” is, upon reflection, a
mischaracterization. Lee suggests, as an example, students might be asked
to “consider the change from a state of affairs in which a class does not trust
a teacher to one in which it does. There may be no event that could be
singled out as marking the change, just a long and gradual process.”

There are many such experiences on which a teacher could draw, such
as shifting alliances among friends or a gradual change in a sports team’s
status with an improvement in performance. Each of these experiences has
characteristics that support the desired conception of history. Events are
certainly not irrelevant. A teacher may do particular things that encourage
trust, such as going to bat for a student who is in a difficult situation or
postponing a quiz because students have two other tests on the same day.
Similarly, there may be an incident in a group that changes the dynamic,
such as a less popular member winning a valued prize or taking the blame
for an incident to prevent the whole group from being punished. But in
these contexts students can see, perhaps with some guided discussion, that
single events are rarely the sole explanation for the state of affairs.

It is often the case that students have experiences that can support the
conceptions we intend to teach, but instructional guidance is required to
bring these experiences to the fore. These might be thought of as “recessive”
experiences. In learning about rational number, for example, it is clear that
whole-number reasoning—the subject of study in earlier grades—is domi-
nant for most students (see Chapter 7). Yet students typically have experi-
ence with thinking about percents in the context of sale items in stores,
grades in school, or loading of programs on a computer. Moss’s approach to
teaching rational number as described in Chapter 7 uses that knowledge of
percents to which most students have easy access as an alternative path to
learning rational number. She brings students’ recessive understanding of
proportion in the context of reasoning about percents to the fore and strength-
ens their knowledge and skill by creating multiple contexts in which propor-
tional reasoning is employed (pipes and tubes, beakers, strings). As with
events in history, students do later work with fractions, and that work at
times presents them with problems that involve dividing a pizza or a pie into
discrete parts—a problem in which whole-number reasoning often domi-
nates. Because a facility with proportional reasoning is brought to bear,



PULLING THREADS 571

however, the division of a pie no longer leads students so easily into whole-
number traps.

Moss reinforces proportional reasoning by having students play games
in which fractions (such as 1/

4
) must be lined up in order of size with deci-

mals (such as .33) and percents (such as 40 percent). A theme that runs
throughout the chapters of this volume, in fact, is that students need many
opportunities to work with a new or recessive concept, especially when
doing so requires that powerful preconceptions be overturned or modified.

Bain, for example, writes about students’ tendency to see “history” and
“the past” as the same thing: “No one should think that merely pointing out
conceptual distinctions through a classroom activity equips students to make
consistent, regular, and independent use of these distinctions. Students’ hab-
its of seeing history and the past as the same do not disappear overnight.”
Bain’s equivalent of repeated comparisons of fractions, decimals, and per-
cents is the ever-present question regarding descriptions and materials: is
this “history-as-event”—the description of a past occurrence—or “history-as-
account”—an explanation of a past occurrence. Supporting conceptual change
in students requires repeated efforts to strengthen the new conception so
that it becomes dominant.

2. Provide opportunities for students to experience discrepant events that allow
them to come to terms with the shortcomings in their everyday models.

Relying on students’ existing knowledge and experiences can be diffi-
cult in some instances because everyday experiences provide little if any
opportunity to become familiar with the phenomenon of interest. This is
often true in science, for example, where the subject of study may require
specialized tools or controlled environmental conditions that students do
not commonly encounter.

In the study of gravity, for example, students do not come to the class-
room with experiences that easily support conceptual change because grav-
ity is a constant in their world. Moreover, experiences they have with other
forces often support misconceptions about gravity. For example, students
can experience variation in friction because most have opportunities to walk
or run an object over such surfaces as ice, polished wood, carpeting, and
gravel. Likewise, movement in water or heavy winds provide experiences
with resistance that many students can easily access. Minstrell found his
students believed that these forces with which they had experience explained
why they did not float off into space (see Chapter 11). Ideas about buoyancy
and air pressure, generally not covered in units on gravity, influenced these
students’ thinking about gravity. Television images of astronauts floating in
space reinforced for the students the idea that, without air to hold things
down, they would simply float off.
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Minstrell posed to his students a question that would draw out their
thinking. He showed them a large frame from which a spring scale hung and
placed an object on the scale that weighed 10 pounds. He then asked the
students to consider a situation in which a large glass dome would be placed
over the scale and all the air forced out with a vacuum pump. He asked the
students to predict (imprecisely) what would happen to the scale reading.
Half of Minstrell’s students predicted that the scale reading would drop to
zero without air; about a third thought there would be no effect at all on the
scale reading; and the remainder thought there would be a small change.
That students made a prediction and the predictions differed stimulated en-
gagement. When the experiment was carried out, the ideas of many students
were directly challenged by the results they observed.

In teaching evolution, Stewart and colleagues found that students’ ev-
eryday observations led them to underestimate the amount of variation in
common species. In such cases, student observations are not so much “wrong”
as they are insufficiently refined. Scientists are more aware of variation be-
cause they engage in careful measurement and attend to differences at a
level of detail not commonly noticed by the lay person. Stewart and col-
leagues had students count and sort sunflower seeds by their number of
stripes as an easy route to a discrepant event of sorts. The students discov-
ered there is far more variation among seeds than they had noticed. Unless
students understand this point, it will be difficult for them to grasp that
natural selection working on natural variation can support evolutionary
change.

While discrepant events are perhaps used most commonly in science,
Bain suggests they can be used productively in history as well (see Chapter
4). To dislodge the common belief that history is simply factual accounts of
events, Bain asked students to predict how people living in the colonies
(and later in the United States) would have marked the anniversary of
Columbus’s voyage 100 years after his landing in 1492 and then each hun-
dred years after that through 1992. Students wrote their predictions in jour-
nals and were then given historical information about the changing Columbian
story over the 500-year period. That information suggests that the first two
anniversaries were not really marked at all, that the view of Columbus’s
“discovery of the new world” as important had emerged by 1792 among
former colonists and new citizens of the United States, and that by 1992 the
Smithsonian museum was making no mention of “discovery” but referred to
its exhibit as the “Columbian Exchange.” If students regard history as the
reporting of facts, the question posed by Bain will lead them to think about
how people might have celebrated Columbus’s important discovery, and not
whether people would have considered the voyage a cause for celebration
at all. The discrepancy between students’ expectation regarding the answer
to the question and the historical accounts they are given in the classroom
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lecture cannot help but jar the conception that history books simply report
events as they occurred in the past.

3. Provide students with narrative accounts of the discovery of (targeted) knowl-
edge or the development of (targeted) tools.

What we teach in schools draws on our cultural heritage—a heritage of
scientific discovery, mathematical invention, and historical reconstruction.
Narrative accounts of how this work was done provide a window into change
that can serve as a ready source of support for students who are being asked
to undergo that very change themselves. How is it that the earth was discov-
ered to be round when nothing we casually observe tells us that it is? What
is place value anyway? Is it, like the round earth, a natural phenomenon that
was discovered? Is it truth, like e = mc2, to be unlocked? There was a time, of
course, when everyday notions prevailed, or everyday problems required a
solution. If students can witness major changes through narrative, they will
be provided an opportunity to undergo conceptual change as well.

Stewart and colleagues describe the use of such an approach in teach-
ing about evolution (see Chapter 12). Darwin’s theory of natural selection
operating on random variation can be difficult for students to grasp. The
beliefs that all change represents an advance toward greater complexity and
sophistication and that changes happen in response to use (the giraffe’s
neck stretching because it reaches for high leaves, for example) are wide-
spread and resilient. And the scientific theory of evolution is challenged
today, as it was in Darwin’s time, by those who believe in intelligent de-
sign—that all organisms were made perfectly for their function by an intelli-
gent creator. To allow students to differentiate among these views and un-
derstand why Darwin’s theory is the one that is accepted scientifically, students
work with three opposing theories as they were developed, supported, and
argued in Darwin’s day: William Paley’s model of intelligent design, Jean
Baptiste de Lamarck’s model of acquired characteristics based on use, and
Darwin’s theory of natural selection. Students’ own preconceptions are gen-
erally represented somewhere in the three theories. By considering in some
depth the arguments made for each theory, the evidence that each theorist
relied upon to support his argument, and finally the course of events that led
to the scientific community’s eventually embracing Darwin’s theory, stu-
dents have an opportunity to see their own ideas argued, challenged, and
subjected to tests of evidence.

Every scientific theory has a history that can be used to the same end.
And every scientific theory was formulated by particular people in particular
circumstances. These people had hopes, fears, and passions that drove their
work. Sometimes students can understand theories more readily if they learn
about them in the context of those hopes, fears, and passions. A narrative
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that places theory in its human context need not sacrifice any of the techni-
cal material to be learned, but can make that material more engaging and
meaningful for students.

The principle, of course, does not apply only to science and is not
restricted to discovery. In mathematics, for example, while some patterns
and relationships were discovered, conventions that form our system of
counting were invented. As the mathematics chapters suggest, the use of
mathematics with understanding—the engagement with problem solving and
strategy use displayed by the best mathematics students—is undermined
when students think of math as a rigid application of given algorithms to
problems and look for surface hints as to which algorithm applies. If stu-
dents can see the nature of the problems that mathematical conventions
were designed to solve, their conceptions of what mathematics is can be
influenced productively.

Historical accounts of the development of mathematical conventions
may not always be available. For purposes of supporting conceptual change,
however, fictional story telling may do just as well as history. In Teaching as
Story Telling, Egan1  relates a tale that can support students’ understanding of
place value:

A king wanted to count his army. He had five clueless counse-
lors and one ingenious counselor. Each of the clueless five tried to
work out a way of counting the soldiers, but came up with meth-
ods that were hopeless. One, for example, tried using tally sticks to
make a count, but the soldiers kept moving around, and the count
was confused. The ingenious counselor told the king to have the
clueless counselors pick up ten pebbles each. He then had them
stand behind a table that was set up where the army was to march
past. In front of each clueless counselor a bowl was placed. The
army then began to march past the end of the table.

As each soldier went by, the first counselor put one pebble into
his bowl. Once he had put all ten pebbles into the bowl, he scooped
them up and then continued to put one pebble down for each sol-
dier marching by the table. He had a very busy afternoon, putting
down his pebbles one by one and then scooping them up when all
were in the bowl. Each time he scooped up the ten pebbles, the
clueless counselor to his left put one pebble into her bowl [gender
equity]. When her ten pebbles were in her bowl, she too scooped
them out again, and continued to put one back into the bowl each
time the clueless counselor to her right picked his up.

The clueless counselor to her left had to watch her through the
afternoon, and he put one pebble into his bowl each time she picked
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hers up. And so on for the remaining counselors. At the end of the
afternoon, the counselor on the far left had only one pebble in his
bowl, the next counselor had two, the next had seven, the next had
six and the counselor at the other end of the table, where the sol-
diers had marched by, had three pebbles in his bowl. So we know
that the army had 12,763 soldiers. The king was delighted that his
ingenious counselor had counted the whole army with just fifty
pebbles.2

When this story is used in elementary school classrooms, Egan encourages
the teacher to follow up by having the students count the class or some
other, more numerous objects using this method.

The story illustrates nicely for students how the place-value system al-
lows the complex problem of counting large numbers to be made simpler.
Place value is portrayed not as a truth but as an invention. Students can then
change the base from 10 to other numbers to appreciate that base 10 is not
a “truth” but a “choice.” This activity supports students in understanding that
what they are learning is designed to make number problems raised in the
course of human activity manageable.

That imaginative stories can, if effectively designed, support conceptual
change as well as historical accounts is worth noting for another reason: the
fact that an historical account is an account might be viewed as cause for
excluding it from a curriculum in which the nature of the account is not the
subject of study. Historical accounts of Galileo, Newton, or Darwin written
for elementary and secondary students can be contested. One would hope
that students who study history will come to understand these as accounts,
and that they will be presented to students as such. But the purpose of the
accounts, in this case, is to allow students to experience a time when ideas
that they themselves may hold were challenged and changed, and that pur-
pose can be served even if the accounts are somewhat simplified and their
contested aspects not treated fully.

ORGANIZING KNOWLEDGE AROUND
CORE CONCEPTS

In the Fish Is Fish story discussed in Chapter 1, we understand quite
easily that when the description of a human generates an image of an up-
right fish wearing clothing, there are some key missing concepts: adapta-
tion, warm-blooded versus cold-blooded species, and the difference in mo-
bility challenges in and out of water. How do we know which concepts are
“core?” Is it always obvious?

The work of the chapter authors, as well as the committee/author dis-
cussions that supported the volume’s development, provides numerous in-
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sights about the identification of core concepts. The first is observed most
explicitly in the work of Peter Lee (see Chapter 2): that two distinct types of
core concepts must be brought to the fore simultaneously. These are con-
cepts about the nature of the discipline (what it means to engage in doing
history, math, or science) and concepts that are central to the understanding
of the subject matter (exploration of the new world, mathematical functions,
or gravity). Lee refers to these as first-order (the discipline) and second-
order (the subject) concepts. And he demonstrates very persuasively in his
work that students bring preconceptions about the discipline that are just as
powerful and difficult to change as those they bring about the specific sub-
ject matter.

For teachers, knowing the core concepts of the discipline itself—the
standards of evidence, what constitutes proof and disproof, and modes of
reasoning and engaging in inquiry—is clearly required. This requirement is
undoubtedly at the root of arguments in support of teachers’ course work in
the discipline in which they will teach. But that course work will be a blunt
instrument if it focuses only on second-order knowledge (of subject) but not
on first-order knowledge (of the discipline). Clarity about the core concepts
of the discipline is required if students are to grasp what the discipline—
history, math, or science—is about.

For identifying both first- and second-order concepts, the obvious place
to turn initially is to those with deep expertise in the discipline. The con-
cepts that organize experts’ knowledge, structure what they see, and guide
their problem solving are clearly core. But in many cases, exploring expert
knowledge directly will not be sufficient. Often experts have such facility
with a concept that it does not even enter their consciousness. These “expert
blind spots” require that “knowledge packages”3 —sets of related concepts
and skills that support expert knowledge—become a matter for study.

A striking example can be found in Chapter 7 on elementary mathemat-
ics. For those with expertise in mathematics, there may appear to be no
“core concept” in whole-number counting because it is done so automati-
cally. How one first masters that ability may not be accessible to those who
did so long ago. Building on the work of numerous researchers on how
children come to acquire whole-number knowledge, Griffin and Case’s4

research conducted over many years suggests a core conceptual structure
that supports the development of the critical concept of quantity. Similar
work has been done by Moss and Case5  (on the core conceptual structure
for rational number) and by Kalchman, Moss, and Case6  (on the core con-
ceptual structure for functions). The work of Case and his colleagues sug-
gests the important role cognitive and developmental psychologists can play
in extending understanding of the network of concepts that are “core” and
might be framed in less detail by mathematicians (and other disciplinary
experts).
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The work of Stewart and his colleagues described in Chapter 12 is an-
other case in which observations of student efforts to learn help reshape
understanding of the package of related core concepts. The critical role of
natural selection in understanding evolution would certainly be identified as
a core concept by any expert in biology. But in the course of teaching about
natural selection, these researchers’ realization that students underestimated
the variation in populations led them to recognize the importance of this
concept that they had not previously identified as core. Again, experts in
evolutionary biology may not identify population variation as an important
concept because they understand and use the concept routinely—perhaps
without conscious attention to it. Knowledge gleaned from classroom teach-
ing, then, can be critical in defining the connected concepts that help sup-
port core understandings.

But just as concepts defined by disciplinary experts can be incomplete
without the study of student thinking and learning, so, too, the concepts as
defined by teachers can fall short if the mastery of disciplinary concepts is
shallow. Liping Ma’s study of teachers’ understanding of the mathematics of
subtraction with regrouping provides a compelling example. Some teachers
had little conceptual understanding, emphasizing procedure only. But as
Box 13-1 suggests, others attempted to provide conceptual understanding
without adequate mastery of the core concepts themselves. Ma’s work pro-
vides many examples (in the teaching of multidigit multiplication, division
of fractions, and calculation of perimeter and area) in which efforts to teach
for understanding without a solid grasp of disciplinary concepts falls short.

SUPPORTING METACOGNITION
A prominent feature of all of the chapters in this volume is the extent to

which the teaching described emphasizes the development of metacognitive
skills in students. Strengthening metacognitive skills, as discussed in Chapter
1, improves the performance of all students, but has a particularly large
impact on students who are lower-achieving.7

Perhaps the most striking consistency in pedagogical approach across
the chapters is the ample use of classroom discussion. At times students
discuss in small groups and at times as a whole class; at times the teacher
leads the discussion; and at times the students take responsibility for ques-
tioning. A primary goal of classroom discussion is that by observing and
engaging in questioning, students become better at monitoring and ques-
tioning their own thinking.

In Chapter 5 by Fuson, Kalchman, and Bransford, for example, students
solve problems on the board and then discuss alternative approaches to
solving the same problem. The classroom dialogue, reproduced in Box 13-2,
supports the kind of careful thinking about why a particular problem-solv-
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BOX 13-1 Conceptual Explanation Without Conceptual Understanding

Liping Ma explored approaches to teaching subtraction with regrouping (problems
like 52 – 25, in which subtraction of the 5 ones from the 2 ones requires that the
number be regrouped). She found that some teachers took a very procedural ap-
proach that emphasized the order of the steps, while others emphasized the con-
cept of composing a number (in this case into 5 tens and 2 ones) and decomposing
a number (into 4 tens and 12 ones). Between these two approaches, however,
were those of teachers whose intentions were to go beyond procedural teaching,
but who did not themselves fully grasp the concepts at issue. Ma8  describes one
such teacher as follows:

Tr. Barry, another experienced teacher in the procedurally directed
group, mentioned using manipulatives to get across the idea that
“you need to borrow something.” He said he would bring in quarters
and let students change a quarter into two dimes and one nickel: “a
good idea might be coins, using money because kids like money. . . .
The idea of taking a quarter even, and changing it to two dimes and
a nickel so you can borrow a dime, getting across that idea that you
need to borrow something.”

There are two difficulties with this idea. First of all, the mathemati-
cal problem in Tr. Barry’s representation was 25 – 10, which is not a
subtraction with regrouping. Second, Tr. Barry confused borrowing
in everyday life—borrowing a dime from a person who has a
quarter—with the “borrowing” process in subtraction with regroup-
ing—to regroup the minuend by rearranging within place values. In
fact, Tr. Barry’s manipulative would not convey any conceptual
understanding of the mathematical topic he was supposed to teach.

Another teacher who grasps the core concept comments on the idea of “bor-
rowing” as follows:9

Some of my students may have learned from their parents that you
“borrow one unit form the tens and regard it as 10 ones”. . . . I will
explain to them that we are not borrowing a 10, but decomposing a
10. “Borrowing” can’t explain why you can take a 10 to the ones
place. But “decomposing” can. When you say decomposing, it
implies that the digits in higher places are actually composed of
those at lower places. They are exchangeable . . . borrowing one unit
and turning it into 10 sounds arbitrary. My students may ask me how
can we borrow from the tens? If we borrow something, we should
return it later on.
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ing strategy does or does not work, as well as the relative benefits of differ-
ent strategies, that can support skilled mathematics performance.

Similarly, in the science chapters students typically work in groups, and
the groups question each other and explain their reasoning. Box 13-3 repro-
duces a dialogue at the high school level that is a more sophisticated version
of that among young mathematics students just described. One group of
students explains to another not only what they concluded about the evolu-
tionary purpose of different coloration, but also the thinking that led them to
that conclusion and the background knowledge from an earlier example
that supported their thinking. The practice of bringing other knowledge to
bear in the reasoning process is at the heart of effective problem solving, but
can be difficult to teach directly. It involves a search through one’s mental
files for what is relevant. If teachers simply give students the knowledge to
incorporate, the practice and skill development of doing one’s own mental
search is shortchanged. Group work and discussions encourage students to
engage actively in the mental search; they also provide examples from other
students’ thinking of different searches and search results. The monitoring of
consistency between explanation and theory that we see in this group dis-
cussion (e.g., even if the male dies, the genes have already been passed
along) is preparation for the kind of self-monitoring that biologists do rou-
tinely.

Having emphasized the benefits of classroom discussion, however, we
offer two cautionary notes. First, the discussion cited in the chapters is guided
by teachers to achieve the desired learning. Using classroom discussion well
places a substantial burden on the teacher to support skilled discussion,
respond flexibly to the direction the discussion is taking, and steer it produc-
tively. Guiding discussion can be a challenging instructional task. Not all
questions are good ones, and the art of questioning requires learning on the
part of both students and teachers.10  Even at the high school level, Bain (see
Chapter 4) notes the challenge a teacher faces in supporting good student
questioning:

Sarena Does anyone notice the years that these were
written? About how old are these accounts?
Andrew?

Andrew They were written in 1889 and 1836. So some
of them are about 112 years old and others are
about 165 years old.

Teacher Why did you ask, Sarena?

Sarena I’m supposed to ask questions about when the
source was written and who wrote it. So, I’m
just doing my job.
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BOX 13-2 Supporting Skilled Questioning and Explaining in
Mathematics Problem Solving

In the dialogue below, young children are learning to explain their thinking
and to ask questions of each other—skills that help students guide their
own learning when those skills are eventually internalized as self-ques-
tioning and self-explaining.

Teacher Maria, can you please explain to your friends in
the class how you solved the problem?

Maria Six is bigger than 4, so I can’t subtract here
[pointing] in the ones. So I have to get more
ones. But I have to be fair when I get more
ones, so I add ten to both my numbers. I add a
ten here in the top [pointing] to change the 4 to
a 14, and I add a ten here in the bottom in the
tens place, so I write another ten by my 5. So
now I count up from 6 to 14, and I get 8 ones
(demonstrating by counting “6, 7, 8, 9, 10, 11,
12, 13, 14” while raising a finger for each word
from 7 to 14). And I know my doubles, so 6 plus
6 is 12, so I have 6 tens left. [She thought, “1 +
5 = 6 and 6 + ? = 12 tens. Oh, I know 6 + 6 = 12,
so my answer is 6 tens.”]

Jorge I don’t see the other 6 in your tens. I only see
one 6 in your answer.

Maria The other 6 is from adding my 1 ten to the 5
tens to get 6 tens. I didn’t write it down.

Andy But you’re changing the problem. How do you
get the right answer?

Maria If I make both numbers bigger by the same
amount, the difference will stay the same.
Remember we looked at that on drawings last
week and on the meter stick.

Michelle Why did you count up?

Palincsar11  has documented the progress of students as they move be-
yond early, unskilled efforts at questioning. Initially, students often parrot
the questions of a teacher regardless of their appropriateness or develop
questions from a written text that repeat a line of the text verbatim, leaving
a blank to be filled in. With experience, however, students become produc-
tive questioners, learning to attend to content and ask genuine questions.
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Maria Counting down is too hard, and my mother
taught me to count up to subtract in first
grade.

Teacher How many of you remember how confused we
were when we first saw Maria’s method last
week? Some of us could not figure out what
she was doing even though Elena and Juan
and Elba did it the same way. What did we do?

Rafael We made drawings with our ten-sticks and
dots to see what those numbers meant. And
we figured out they were both tens. Even
though the 5 looked like a 15, it was really just
6. And we went home to see if any of

our parents could explain it to us, but we had
to figure it out ourselves and it took us 2 days.

Teacher Yes, I was asking other teachers, too. We
worked on other methods too, but we kept
trying to understand what this method was
and why it worked.

And Elena and Juan decided it was clearer if
they crossed out the 5 and wrote a 6, but Elba
and Maria liked to do it the way they learned at
home. Any other questions or comments for
Maria? No? Ok, Peter, can you explain your
method?

Peter Yes, I like to ungroup my top number when I
don’t have enough to subtract everywhere. So
here I ungrouped 1 ten and gave it to the 4
ones to make 14 ones, so I had 1 ten left here.
So 6 up to 10 is 4 and 4 more up to 14 is 8, so
14 minus 6 is 8 ones. And 5 tens up to 11 tens
is 6 tens. So my answer is 68.

Carmen How did you know it was 11 tens?

Peter Because it is 1 hundred and 1 ten and that is
11 tens.

Similarly, students’ answers often cannot serve the purpose of clarifying
their thinking for classmates, teachers, or themselves without substantial
support from teachers. The dialogue in Box 13-4 provides an example of a
student becoming clearer about the meaning of what he observed as the
teacher helped structure the articulation.
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BOX 13-3 Questioning and Explaining in High School Science

The teacher passes out eight pages of case materials and asks the stu-
dents to get to work. Each group receives a file folder containing the task
description and information about the natural history of the ring-necked
pheasant. There are color pictures that show adult males, adult females,
and young. Some of the pages contain information about predators, mat-
ing behavior, and mating success. The three students spend the remain-
der of the period looking over and discussing various aspects of the case.
By the middle of the period on Tuesday, this group is just finalizing their
explanation when Casey, a member of another group, asks if she can talk
to them.

Casey What have you guys come up with? Our group
was wondering if we could talk over our ideas
with you.

Grace Sure, come over and we can each read our
explanations.

These two groups have very different explanations. Hillary’s group is
thinking that the males’ bright coloration distracts predators from the nest,
while Casey’s group has decided that the bright coloration confers an
advantage on the males by helping them attract more mates. A lively
discussion ensues.

Ed But wait, I don’t understand. How can dying be
a good thing?

Jerome Well, you have to think beyond just survival of
the male himself. We think that the key is the
survival of the kids. If the male can protect his

Group work and group or classroom discussions have another potential
pitfall that requires teacher attention: some students may dominate the dis-
cussion and the group decisions, while others may participate little if at all.
Having a classmate take charge is no more effective at promoting
metacognitive development—or supporting conceptual change—than hav-
ing a teacher take charge. In either case, active engagement becomes unnec-
essary. One approach to tackling this problem is to have students rate their
group effort in terms not only of their product, but also of their group dy-
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namics.12  Another approach, suggested by Bain (Chapter 4), is to have stu-
dents pause during class discussion to think and write individually. As stu-
dents discussed the kind of person Columbus was, Bain asked them to write
a 2-minute essay before discussing further. Such an exercise ensures that
students who do not engage in the public discussion nonetheless formulate
their ideas.

Group work is certainly not the only approach to supporting the devel-
opment of metacognitive skills. And given the potential hazard of group

young and give them a better chance of
surviving then he has an advantage.

Claire Even if he dies doing it?

Grace Yeah, because he will have already passed on
his genes and stuff to his kids before he dies.

Casey How did you come up with this? Did you see
something in the packets that we didn’t see?

Grace One reason we thought of it had to do with the
last case with the monarchs and viceroy.

Hillary Yeah, we were thinking that the advantage isn’t
always obvious and sometimes what is good
for the whole group might not seem like it is
good  for one bird or butterfly or whatever.

Jerome We also looked at the data in our packets on
the number of offspring  fathered by brighter
versus duller males. We saw that the brighter
males  had a longer bar.

Grace See, look on page 5, right here.

Jerome So they had more kids, right?

Casey We saw that table too, but we thought that it
could back up our idea that the brighter males
were able to attract more females as mates.

The groups agree to disagree on their interpretation of this piece of
data and continue to compare their explanations on other points. While it
may take the involvement of a teacher to consider further merits of each
explanation given the data, the students’ group work and dialogue pro-
vide the opportunity for constructing, articulating, and questioning a sci-
entific hypothesis.
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BOX 13-4 Guiding Student Observation and Articulation

In an elementary classroom in which students were studying the behav-
ior of light, one group of students observed that light could be both re-
flected and transmitted by a single object. But students needed consider-
able support from teachers to be able to articulate this observation in a
way that was meaningful to them and to others in the class:

Ms. Lacey I’m wondering. I know you have a lot of see-
through things, a lot of reflect things. I’m
wondering how you knew it was see-through.

Kevin It would shine just, straight through it.

Ms. Lacey What did you see happening?

Kevin We saw light going through the . . .

Derek Like if we put light . . .

Kevin Wherever we tried the flashlight, like right
here, it would show on  the board.

Derek And then I looked at the screen [in front of and
to the side of the object], and then it showed a
light on the screen. Then he said, come here,
and look at the back. And I saw the back, and it
had another [spot].

Ms. Lacey Did you see anything else happening at the
material?

Kevin We saw sort of a little reflection, but we, it had
mostly just see-through.

Derek We put, on our paper we put reflect, but we
had to decide which one to put it in. Because it
had more of this than more of that.

Ms. Lacey Oh. So you’re saying that some materials . . .

Derek Had more than others . . .

dynamics, using some individual approaches to supporting self-monitoring
and evaluation may be important. For example, in two experiments with
students using a cognitive tutor, Aleven and Koedinger13  asked one group to
explain the problem-solving steps to themselves as they worked. They found
that students who were asked to self-explain outperformed those who spent
the same amount of time on task but did not engage in self-explanation on
transfer problems. This was true even though the common time limitation
meant that the self-explainers solved fewer problems.
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Another individual approach to supporting metacognition is suggested
by Stewart (Chapter 12). Students record their thinking early in the treatment
of a new topic and refer back to it at the unit’s end to see how it has
changed. This brings conscious attention to the change in a student’s own
thinking. Similarly, the reflective assessment aspect of the ThinkerTools cur-
riculum described in Chapter 1 shifts students from group inquiry work to
evaluating their group’s inquiry individually. The results in the ThinkerTools
case suggest that the combination of group work and individual reflective

Ms. Lacey  . . . are doing, could be in two different
categories.

Derek Yeah, because some through were really
reflection and see-through together, but we
had to decide which.

[Intervening discussion takes place about
other data presented by this group that had to
do with seeing light reflected or transmitted as
a particular color, and how that color com-
pared with the color of the object.]

[at the end of this group’s reporting, and after
the students had been encouraged to identify
several claims that their data supported
among those that had been presented previ-
ously by other groups of students]

Ms. Lacey There was something else I was kinda con-
vinced of. And that was  that light can do two
different things. Didn’t you tell me it went both
see-through and reflected?

Kevin & Derek Yeah. Mm-hmm.

Ms. Lacey So do you think you might have another claim
there?

Derek Yeah.

Kevin Light can do two things with one object.

Ms. Lacey More than one thing?

Kevin Yeah.

Ms. Lacey Okay. What did you say?

Kevin & Derek Light can do two things with one object.

See Chapter 10 for the context of this dialogue.
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assessment is more powerful that the group work alone (see Box 9-5 in
Chapter 9).

PRINCIPLES OF LEARNING AND CLASSROOM
ENVIRONMENTS

The principles that shaped these chapters are based on efforts by re-
searchers to uncover the rules of the learning game. Those rules as we
understand them today do not tell us how to play the best instructional
game. They can, however, point to the strengths and weakness of instruc-
tional strategies and the classroom environments that support those strate-
gies. In Chapter 1, we describe effective classroom environments as learner-
centered, knowledge-centered, assessment-centered, and community-
centered. Each of these characteristics suggests a somewhat different focus.
But at the same time they are interrelated, and the balance among them will
help determine the effectiveness of instruction.

A community-centered classroom that relies extensively on classroom
discussion, for example, can facilitate learning for several reasons (in addi-
tion to supporting metacognition as discussed above):

• It allows students’ thinking to be made transparent—an outcome that
is critical to a learner-centered classroom. Teachers can become familiar
with student ideas—for example, the idea in Chapter 7 that two-thirds of a
pie is about the same as three-fourths of a pie because both are missing one
piece. Teachers can also monitor the change in those ideas with learning
opportunities, the pace at which students are prepared to move, and the
ideas that require further work—key features of an assessment-centered class-
room.

• It requires that students explain their thinking to others. In the course
of explanation, students develop a disposition toward productive interchange
with others (community-centered) and develop their thinking more fully
(learner-centered). In many of the examples of student discussion through-
out this volume—for example, the discussion in Chapter 2 of students exam-
ining the role of Hitler in World War II—one sees individual students becom-
ing clearer about their own thinking as the discussion develops.

• Conceptual change can be supported when students’ thinking is chal-
lenged, as when one group points out a phenomenon that another group’s
model cannot explain (knowledge-centered). This happens, for example, in
a dialogue in Chapter 12 when Delia explains to Scott that a flap might
prevent more detergent from pouring out, but cannot explain why the amount
of detergent would always be the same.
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At the same time, emphasizing the benefits of classroom discussion in
supporting effective learning does not imply that lectures cannot be excel-
lent pedagogical devices. Who among us have not been witness to a lecture
from which we have come away having learned something new and impor-
tant? The Feynman lectures on introductory physics mentioned in Chapter 1,
for example, are well designed to support learning. That design incorpo-
rates a strategy for accomplishing the learning goals described throughout
this volume.14 Feynman anticipates and addresses the points at which stu-
dents’ preconceptions may be a problem. Knowing that students will likely
have had no experiences that support grasping the size of an atom, he
spends time on this issue, using familiar references for relative size that
allow students to envision just how tiny an atom is.

But to achieve effective learning by means of lectures alone places a
major burden on the teacher to anticipate student thinking and address prob-
lems effectively. To be applied well, this approach is likely to require both a
great deal of insight and much experience on the part of the teacher. With-
out such insight and experience, it will be difficult for teachers to anticipate
the full range of conceptions students bring and the points at which they
may stumble.15 While one can see that Feynman made deliberate efforts to
anticipate student misconceptions, he himself commented that the major
difficulty in the lecture series was the lack of opportunity for student ques-
tions and discussion, so that he had no way of really knowing how effective
the lectures were. In a learner-centered classroom, discussion is a powerful
tool for eliciting and monitoring student thinking and learning.

In a knowledge-centered classroom, however, lectures can be an impor-
tant accompaniment to classroom discussion—an efficient means of consoli-
dating learning or presenting a set of concepts coherently. In Chapter 4, for
example, Bain describes how, once students have spent some time working
on competing accounts of the significance of Columbus’s voyage and struggled
with the question of how the anniversaries of the voyage were celebrated,
he delivers a lecture that presents students with a description of current
thinking on the topic among historians. At the point at which this lecture is
delivered, student conceptions have already been elicited and explored.
Because lectures can play an important role in instruction, we stress once
again that the emphasis in this volume on the use of discussion to elicit
students’ thinking, monitor understanding, and support metacognitive de-
velopment—all critical elements of effective teaching—should not be mis-
taken for a pedagogical recommendation of a single approach to instruction.
Indeed, inquiry-based learning may fall short of its target of providing stu-
dents with deep conceptual understanding if the teacher places the full bur-
den of learning on the activities. As Box 1-3 in Chapter 1 suggests, a lecture
that consolidates the lessons of an activity and places the activity in the
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conceptual framework of the discipline explicitly can play a critical role in
supporting student understanding.

How the balance is struck in creating a classroom that functions as a
learning community attentive to the learners’ needs, the knowledge to be
mastered, and assessments that support and guide instruction will certain
vary from one teacher and classroom to the next. Our hope for this volume,
then, is that its presentations of instructional approaches to addressing the
key principles from How People Learn will support the efforts of teachers to
play their own instructional game well. This volume is a first effort to elabo-
rate those findings with regard to specific topics, but we hope it is the first of
many such efforts. As teachers and researchers become more familiar with
some common aspects of student thinking about a topic, their attention may
begin to shift to other aspects that have previously attracted little notice. And
as insights about one topic become commonplace, they may be applied to
new topics.

Beyond extending the reach of the treatment of the learning principles
of How People Learn within and across topics, we hope that efforts to incor-
porate those principles into teaching and learning will help strengthen and
reshape our understanding of the rules of the learning game. With physics
as his topic of concern, Feynman16  talks about just such a process: “For a
long time we will have a rule that works excellently in an overall way, even
when we cannot follow the details, and then some time we may discover a
new rule. From the point of view of basic physics, the most interesting
phenomena are of course in the new places, the places where the rules do
not work—not the places where they do work! That is the way in which we
discover new rules.”

We look forward to the opportunities created for the evolution of the
science of learning and the professional practice of teaching as the prin-
ciples of learning on which this volume focuses are incorporated into class-
room teaching.

NOTES
1. Egan, 1986.
2. Story summarized by Kieran Egan, personal communication, March 7, 2003.
3. Liping Ma’s work, described in Chapter 1, refers to the set of core concepts and

the connected concepts and knowledge that support them as “knowledge
packages.”

4. Griffin and Case, 1995.
5. Moss and Case, 1999.
6. Kalchman et al., 2001.
7. Palincsar, 1986; White and Fredrickson, 1998.
8. Ma, 1999, p. 5.
9. Ma, 1999, p. 9.
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10. Palincsar, 1986.
11. Palincsar, 1986.
12. National Research Council, 2005 (Stewart et al., 2005, Chapter 12).
13. Aleven and Koedinger, 2002.
14. For example, he highlights core concepts conspicuously. In his first lecture, he

asks, “If, in some cataclysm, all of scientific knowledge were to be destroyed,
and only one sentence passed on to the next generation of creatures, what
statement would contain the most information in the fewest words? I believe it
is the atomic hypothesis that all things are made of atoms—little particles that
move around in perpetual motion, attracting each other when they are a little
distance apart, but repelling upon being squeezed into one another.

15. Even with experience, the thinking of individual students may be unantici-
pated by the teacher.

16. Feynman, 1995, p. 25.
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and reasoning, 400
of scientific phenomena, 399–400
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Evidence, 41, 54–58, 61, 65, 112, 120, 165
in context, 167
cutting-and-pasting, 167
finding out about the past from

received information, 56–58
historical, 134
information as, 166
in isolation, 167
model of progression in ideas about,

166–167
pictures of the past, 166
questions at the heart of using, 124
testimony as, 166

Experiments on Plant Hybridization, 529
Experts remembering considerably more

relevant detail than novices in
tasks within their domain, 8–9

Explanations, 156
of words in the story, 132–133

Explanatory power, 518
External consistency, 518
External migration, 68
External testing, 181

F
Face value

going beyond, 134
Factual knowledge

manipulating, 79–80
Falling bodies

explaining, 510–511
Familiarity, 389–390

the dangers of what appears to be
familiar, 122

Feynman, Richard, 24, 403
Filling the world with people

unit on, 169
First contacts

whether St. Brendan sailed from
Ireland to America, unit on, 171

why the Norse colonists didn’t stay in
America, unit on, 172

First cycle of investigation
community knowledge from, 463

Fish story (Fish Is Fish), 2–12, 398, 414, 575
5-year-olds understandings of, 273–

274
engaging prior understandings in, 4–5

essential role of factual knowledge
and conceptual frameworks in
understanding, 6–9

importance of self-monitoring in, 10–
12

“Flat earth,” 189–199
accounts of Colombian voyages, 192–

193
ancient views of the Earth as flat or

round, 196–197
Formative assessments, 16–17, 193
Forms of representation

4-year-olds understandings of, 270–
273

and the lands in which they appear,
286

Fourth cycle of investigation
community knowledge from, 467

Fourth graders’ initial ideas about light, 431
Fractions and mixed representations of

rational numbers, 334–337
card games, 335–337
cracking the code, 335
fractions and equivalencies, 334–335

Framework of How People Learn
seeking a balanced classroom

environment, 242–243
Frank, Anne, 109
Fundamental physics, 24
Fundamentalism, 176
Fuson, Karen C., 23, 217–256, 593
Future real-world experience, 390

G
Galapagos tortoises, 558
GCK. See Genetics Construction Kit
General ideas, 162
General meaning of slope, 363
Generalizing and textbook claims and the

nature of sources, 102–107
Genetics, 516–540

attending to students’ existing
knowledge, 517–526

metacognition and engaging students
in reflective scientific practice,
538–540

simple dominance homework
assignment, 539

student inquiry in, 526–538
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homework assignment, example of

student work on, 535
Genetics content

learning, 524–526
Geographic knowledge

Christian, 200
the great interruption in European,

200–201
Gibbon, Edward, 57
GIsML Community of Practice, 470n
“Globalization,” 169
Gould, Stephen Jay, 198
Gragg, Charles, 236
Gravity and its effects, 477–511

activity A1 worksheet, 483
analogy to magnetism, 508
bridging from understanding

magnetic action at a distance to
understanding gravitational action
at a distance, 508–510

building an analogy to understand
the benchmark experience, 489–
490

consensus discussion and summary of
learning, 490–491

defining, 477–510
diagnostic assessment, 491–492
exploring similarities and differences

between actions at a distance,
492–493

factors on which the magnitude of
gravitational force depends, 501–
508

finding out about students’ initial
ideas, 477–478

identifying preconceptions, 478–480
opportunities for students to suggest

and test related hypotheses, 484–
489

twisting a torsion bar, 493–501
weighing in a vacuum, 480–483

Grids, 173–175
Griffin, Sharon, 23, 257–308, 593
Group work, 582–584
Guess My Number, 300
Guidance of student observation and

articulation
supporting metacognition, 584–585

Guided inquiry, 495, 579, 582

H
“H(ac)”, 187–188
Hall, G. Stanley, 177n
Halsall, William Formsby, 87
Help

seeking and giving, 241–242
Heuristic for teaching and learning science

through guided inquiry, 427–455
cycle of investigation in guided-

inquiry science, 427
data tables from initial recording and

with revisions for analysis, 445
engage phase, 428–434
fourth graders’ initial ideas about

light, 431
investigate phase, 438–443
investigative setup for studying how

light interacts with solid objects,
437

prepare-to-investigate phase, 434–438
prepare-to-report phase, 443–448
report phase, 448–455

“H(ev)”, 187
Higher-order knowledge structure, 276
Historical accounts, 59–61

different ideas about, 38–39
not copies of the past, 62–63
“problematizing,” 184–188

Historical evidence, 134
Historical films, 151
Historical lines of thinking, 182
Historical problems

transforming topics and objectives
into, 181–199

History, 29–213
applying the principles of How People

Learn in teaching high school
history, 179–213

“counterintuitive” intuitions in, 33, 42
“doing,” 32, 48
implications for planning, 164–176
periods in, 42–43
putting principles into practice, 79–

178
the reality test, 80–84
significance in, 45
that “works,” 65–72
understanding, 31–77
working with evidence, 84–119
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History and everyday ideas, 33–61
differences in the power of ideas, 36–

37
grounds for caution, 40–41
ideas we need to address, 41–61
the progression of ideas, 37–40
understanding the past and

understanding the discipline of
history, 34–35

“History-as-account,” 187–188, 203
“History-as-event,” 187, 203
“History-considerate” learning

environments
designing, 199–209
the great interruption in European

geographic knowledge, 200–201
with tools for historical thinking, 199–

209
History of the Decline and Fall of the

Roman Empire, The, 57
Hitler, Adolf, 34–35, 59–60, 586
Holt, John, 218
How People Learn: Brain, Mind, Experience,

and School, 1, 25, 31–32
cautions in, 199
design characteristics described in,

12–13, 20–22, 257–258, 359
key findings of, 79–80, 171–173, 176
research summarized in, 241
violating principles of, 319

How People Learn framework, 411–415
assessment-centered, 415
community-centered, 415
knowledge-centered, 414
learner-centered, 414
reflective assessment in ThinkerTools,

412–413
Humor

enlivening learning and helping build
positive relationships with
students, 501

I
Ideas, 41–61

accounts, 59–61
cause, 49–54
change, 43–46
empathy, 46–49
evidence, 54–58
progression of, 37–40

providing students with opportunities
to make public, 524

“second-order,” 32–33
time, 41–43

Inaccessible algorithms, 236
Information, 41, 124, 166

“clumping,” 69
finding, 121
from history, 499
from the history of science, 499
inquiry based, 470n
storing in memory, 180

Inheritance
meiotic processes governing, 528

Initial models
providing students with opportunities

to revise in light of anomalous
data and in response to critiques
of others, 524

Inquiry based information, 470n
Instruction, 545–554

to support mathematical proficiency,
233–236

Instruction in rational number, 319–340
alternative instructional approaches,

321–322
children’s thinking after instruction,

338–340
curriculum overview, 325
fractions and mixed representations

of rational numbers, 334–337
introduction of decimals, 332–334
introduction to percents, 325–332
knowledge network, 340
pie charts and a part-whole

interpretation of rational numbers,
320–321

pipes, tubes, and beakers, 322–324
Instruction that supports metacognition,

239–242
emphasizing debugging, 239–240
internal and external dialogue as

support for metacognition, 241
seeking and giving help, 241–242

Instructional lines of thinking, 182
Intellectual roles for students to adopt, 436
Internal consistency, 518
Internal migration, 68
Interpretation

anchoring themes in historical, 186
of data, 403
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Interpreting sources in context and
textbook claims and the nature of
sources, 100

Intuitions in history
“counterintuitive,” 33, 42

Invented procedures, 329
Investigate phase, 438–443
Investigative setup for studying how light

interacts with solid objects, 437
Irving, Washington, 208
Isolation

evidence in, 167
Italy

instruction about payment for work,
66–67

J
Japan

teacher professional development in,
244

Jasper Woodbury series, 391
Jefferson, Thomas, 62–63
Johnson, Lyndon, 62
Jonassen, David, 181
Judgments

avoiding expressing, 498

K
Kalchman, Mindy, 23, 217–256, 351–393,

593
Knowledge. See also Prior understandings

building learning paths and networks
of, 258

connected, 15–16
disciplinary, 32, 543–544
handed down through generations,

93–94
manipulating factual, 79–80
“metahistorical,” 32
organized, 462
“second-order,” 32–33
secret, 72
student, 258, 544–545
of what it means to “do science,”

403–407
Knowledge-centered classroom

environments, 13–16, 267, 284,
292, 414, 555, 587

Knowledge claims
in genetics, assessing, 523

Knowledge networks, 340
new concepts of numbers and new

applications, 312–316
new symbols, meanings, and

representations, 313–314
reconceptualizing the unit and

operations, 315
the subconstructs, 314–315
understanding numbers as

multiplicative relations, 316
“Knowledge packages,” 588n
Knowledge that should be taught, 259–267

central conceptual structure
hypothesis, 262–265

children passing the Number
Knowledge Test, 263, 265

measures of arithmetic learning and
achievement, 265

numerical transfer tests, 263
Koedinger, Kenneth R., 351–393, 593–594
Kraus, Pamela, 23, 401, 475–513, 594
KWL charts, 199, 428–430

L
Lamarck, Jean Baptiste de, 550, 573
Larson, Gary, 217
Learner-centered classroom environments,

13–14, 266, 292, 414, 555
Learning

an active process, 476
humor enlivening, 501

Learning environments and the design of
instruction, 12–20

assessment-centered classroom
environments, 13, 16–17, 267, 290,
292, 555–558

community-centered classroom
environments, 13, 17–20, 301,
559–560

knowledge-centered classroom
environments, 13–16, 267, 284,
292, 555, 587

learner-centered classroom
environments, 13–14, 266, 292,
414, 555

perspectives on, 13
Learning goals for prekindergarten through

grade 2, 284–285
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Learning paths of knowledge
building, 258
from children’s math worlds, for

single-digit addition and
subtraction, 234–235

Learning principles
engaging resilient preconceptions,

569–575
organizing knowledge around core

concepts, 575–577
principles of learning and classroom

environments, 586–588
pulling threads, 569–590
revisiting the three, 567–590
supporting metacognition, 577–586

Learning rational number, 341–343
metacognition, 342
network of concepts, 341–342
prior understandings, 341

Learning with understanding, 559–560
supporting knowledge use in new

situations, 7
Leather boats, 139–141
Lee, Peter J., 23, 31–178, 576, 594
Lesson Study Research Group, 244
Life and Voyages of Christopher Columbus,

The, 208
“Light catchers,” 437. See also Study of light
Linkage

of formal mathematical understanding
to informal reasoning, 354–355

Lionni, Lee, 2, 4. See also Fish story
Logic of the situation

exploring, 50–51
Lowenthal, David, 185

M
Ma, Liping, 15–16, 18–19, 577–578
Magic Shoes game, 295–296
Magnetism

analogy to gravity, 508
Magnitude

in decimal numbers, 333–334
of gravitational force, 501–508

Magnusson, Shirley J., 421–474, 594
Management of student activities, 435
Mandates

curricular, 181
Manipulation of factual knowledge, 79–80

Maps, 86, 140–141
conceptual, 188

Marfan’s syndrome, 533
Math words, 230
Mathematical proficiency, 218

adaptive reasoning, 218
conceptual understanding, 218
procedural fluency, 218
productive disposition, 218
strategic competence, 218

Mathematical thinkers
building, 258

Mathematical understanding, 217–256
computation without comprehension,

218
developing mathematical proficiency,

232–236
learning to use student thinking in

teacher video clubs, 244
lesson study cycle, 244
a metacognitive approach enabling

student self-monitoring, 236–243
suggested reading list for teachers,

256
teachers as curriculum designers, 245
teachers engaging students’

preconceptions, 219–231
understanding requiring factual

knowledge and conceptual
frameworks, 231–236

Mathematics, 215–393
as about quantity, not about numbers,

280
as “following rules” to guarantee

correct answers, 220–221
fostering the development of whole

number sense, 257–308
as learning to compute, 220
pipes, tubes, and beakers in, 309–349
teaching and learning functions, 351–

393
Mathematics instruction

in China, 15–16, 18–19
Mayflower, The

arrival of, 84, 87, 90, 92–95
Medawar, Peter, 406
Media

technical and passive, 496
Meiotic processes

governing inheritance, 528



INDEX 607

Mendel, Gregor, 406, 410, 517, 523, 525–
529, 539

model of simple dominance, 528
Mental counting line structure, 276
Metacognition, 10, 238, 407–411, 577–586

conceptual explanation without
conceptual understanding, 578

engaging students in reflective
scientific practice, 538–540

in evaluating the methods used in an
experiment, 408–409

guiding student observation and
articulation, 584–585

of light, 426
in Mendel’s contribution to genetics,

410
questioning and explaining in high

school science, 582–583
and rational number, 319, 342
supporting, 577–586
supporting skilled questioning and

explaining in mathematics
problem solving, 580–581

Metacognitive approaches to instruction, 2,
80

enabling student self-monitoring,
236–243

framework of How People Learn, 242–
243

instruction that supports
metacognition, 239–242

seeking a balanced classroom
environment, 242–243

supporting student and teacher
learning through a classroom
discourse community, 237

Metacognitive monitoring, 10
“Metahistorical” knowledge, 32
“Metamemory,” 11
Migration

internal and external, 68
Miller Analogies Test, 404
“Mindtools,” 181
Minstrell, James, 23, 401, 475–513, 594–595
Minus Mouse, 290–291
Misconceptions

about momentum, 5
about the scientific method, 414

“Missing-term problem,” 317
Misunderstandings, 310

Model-based inquiry, 515–565
classroom environments that support

learning with understanding, 555–
560

developing Darwin’s model of natural
selection in high school evolution,
540–554

genetics, 516–540
Modeling for Understanding in Science

Education (MUSE), 516, 548
curricula from, 555, 559

Models, 402–403
consistency between, 557
of progression in ideas about

evidence, 166–167
providing students with opportunities

to revise in light of anomalous
data and in response to critiques
of others, 524

Monarch/viceroy case
Darwinian explanation written by

students on the, 553
Monitoring. See also Self-monitoring

metacognitive, 10
“Monster-free zone,” 295
Moss, Joan, 23, 309–349, 595
Motion of projectiles

explaining, 511
Multiple strategies, 223–227

allowing, 223–227
engaging students’ problem-solving

strategies, 225–227
three subtraction methods, 224

Multiplicative operators, 315
Multiplicative reasoning

relative thinking as, 311
MUSE. See Modeling for Understanding in

Science Education
Mystery

sense of, 71
“Mystery Object Challenge,” 329

N
Narrative accounts

providing students with, 573–575
National Council of Teachers of

Mathematics (NCTM), 221, 241,
259

standards from, 305
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National Curriculum for History, 177n
National Research Council, 1, 218, 221, 233

guidelines of, 398
National Science Education Standards,

455, 561
Native Americans, 41, 82–83, 98, 105–106
NCTM. See National Council of Teachers of

Mathematics
Necessary conditions

causes as, 53
Neighborhood Number Line, 295
Networks

of concepts, and rational number,
341–342

of knowledge, building, 258
New conceptualizations

understanding numbers as
multiplicative relations, 316

New ideas
development of, 470n

New rules
discovering, 588

New symbols
meanings, and representations, 313–

314
“Nothing” happening, 43
Number Knowledge Test, 260, 264, 267–

269, 271, 279, 304–305
administering and scoring, 271

Number worlds, 282–302
encouraging the use of metacognitive

processes to facilitate knowledge
construction, 300–302

engaging children’s emotions and
capturing their imagination, 296–
298

exposing children to major forms of
number representation, 283–288

the five forms of representation and
the lands in which they appear,
286

learning goals for prekindergarten
through grade 2, 284–285

providing analogs of number
representations that children can
actively explore hands-on, 292–
296

providing opportunities for children
to acquire computational fluency
as well as conceptual
understanding, 298–300

providing opportunities to link the
“world of quantity” with the
“world of counting numbers” and
the “world of formal symbols,”
288–292

Number Worlds program, 262, 283, 287–
288, 292, 296, 300, 302–303

Numeric answers, 372

O
Object Land, 284–286, 288
“One world” revolution, 169
“Openings” in the curriculum, 245
Opportunities

to develop causal models to account
for patterns, 524

to experience discrepant events that
allow them to come to terms with
the shortcomings in their everyday
models, 571–573

to make ideas public, 524
providing students with, 523–524
to revise initial models in light of

anomalous data and in response
to critiques of others, 524

to search for patterns in data, 524
to use patterns in data and models to

make predictions, 524
to use prior knowledge to pose

problems and generate data, 523–
524

Opportunities for children to acquire
computational fluency as well as
conceptual understanding, 298–300

Sky Land Blastoff activity, 298–299
Opportunities for students to suggest and

test related hypotheses in
elaboration activities, 484–489

inverted cylinder in a cylinder of
water, 485–486

inverted glass of water, 484–485
leaky bottle, 486
water and air in a straw, 486–488
weighing” an object in a fluid

medium, 488–489
Opportunities to link the “world of

quantity” with the “world of
counting numbers” and the “world
of formal symbols,” 288–292

Minus Mouse, 290–291
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Plus Pup, 288–290
Plus Pup meets Minus Mouse, 291–292

Optics kit, 422, 468
Order

of counting words, 274
in decimal numbers, 333–334

Organized knowledge, 462
Organizing knowledge around core

concepts
subtraction with regrouping, 18–19

Origin of Species, 551
Outcomes of courses, 181

P
Pace of change, 44
Paley, William, 550–551, 573
Palincsar, Annemarie Sullivan, 23, 421–474,

595
Park, Lesley, 455
Part-whole relation, 314
Pass it on (game), 105
Passive media, 496
Passmore, Cynthia M., 23, 515–565, 595
Past

finding out about, 56–58
pictures of, 166

Patterns in data
providing students with opportunities

to search for, 524
providing students with opportunities

to use to make predictions, 524
Payment for work in history, 66–67
Peanuts cartoon, 309
Pedagogical words

meaningful, 230
People going their separate ways

unit on, 170
Percents, 325–332, 340

computing with, 329
in everyday life, 325
“families” of, 331
invented procedures, 329
on number lines, 326–329
pipes and tubes, as representations

for fullness, 325–326
starting from, 322–324
string challenges, 329–331

Percy, George, 122
Performance

need to assist, 203

Periods in history, 42–43
Physics

fundamental, 24
instruction in, 16–17

Picture Land, 285–287, 297
Pie charts and a part-whole interpretation

of rational numbers, 320–321
Pilgrim Fathers and Native Americans, 71,

84–119
exploring the basis for textbook

claims and the nature of sources,
84–111

grid for evidence on, 173, 175
ideas, beliefs, and attitudes, 112–118
language of sources, interpretation,

and other perspectives, 118–119
teacher questions, 112–113, 115
whether people thought like us in the

past, 117
Pipes

a new approach to rational-number
learning, 322–324

a representation for fullness, 325–326
Planning, 164–176

of progression in ideas about
evidence, 166–167, 174–175

unit on filling the world with people,
169

unit on first contacts, whether St.
Brendan sailed from Ireland to
America, 171

unit on first contacts, why the Norse
colonists didn’t stay in America,
172

unit on people going their separate
ways, 170

Plausibility, 138
Plus Pup, 288–290

meeting Minus Mouse, 291–292
Pocahontas (Disney film), 122
Pory, John, 84–85, 90, 97, 100–104, 106–

108
Positive relationships

humor helping to build with students,
501

Possible Worlds, 406
Power

explanatory and predictive, 518
Preconceptions, 1, 55, 399–403

about people, society, and how the
world works, 127–128

conceptual change, 400–403
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drawing on knowledge and
experiences that students
commonly bring to the classroom
but are generally not activated
with regard to the topic of study,
569–571

engaging resilient, 569–575
everyday concepts of scientific

methods, argumentation, and
reasoning, 400

everyday concepts of scientific
phenomena, 399–400

importance of students’, 79
providing opportunities for students

to experience discrepant events
that allow them to come to terms
with the shortcomings in their
everyday models, 571–573

providing students with narrative
accounts of the discovery of
(targeted) knowledge or the
development of (targeted) tools,
573–575

Preconceptions about how we know about
the past, 121–123

common student assumptions about
how we know of the past, 123

dangers of what appears to be
familiar, 122

Predictive power, 518
Preinstruction assessments, 495
Prepare-to-investigate phase, 434–438
Prepare-to-report phase, 443–448
Principles of How People Learn applied to

teaching high school history, 179–
213

designing a “history-considerate”
learning environment, 199–209

transforming topics and objectives
into historical problems, 181–199

Prior understandings
development of physical concepts in

infancy, 4
engaging, 4–5
of light, 425
misconceptions about momentum, 5
providing students with opportunities

to use to pose problems and
generate data, 523–524

and rational number, 341
Problem solvers

building, 258

“Problematizing” historical accounts, 184–188
Procedural fluency, 218
Productive disposition, 218
Proficiency

mathematical, 218
Progress, 44–45
Progression of ideas, 37–40

different ideas about historical
accounts, 38–39

Progressive change, 45
Project CHATA. See Concepts of History

and Teaching Approaches
Projectiles

explaining motion of, 511
Proportion, 234, 340
Pump Algebra Tutor. See Cognitive Tutor

Algebra

Q
Quantity, 234

schema for, 272
Question Poser, 300–301
Questioning and explaining in high school

science
supporting metacognition, 582–583

Questions, 128
diagnostic, 478
at the heart of using evidence, 124
many as yet unanswered, 492
teachers modeling for students, 477

Quotient interpretation, 314

R
Rational change, 45
Rational number, 341–343

metacognition, 342
network of concepts, 341–342
prior understandings, 341

Rational-number learning
and the knowledge network, 312–316
metacognition and rational number, 319
new concepts of numbers and new

applications, 312–316
and the principles of How People

Learn, 312–319
students’ errors and misconceptions

based on previous learning, 316–
319
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Real-world experience
current and future, 390

Real-world words, 230
Reality test, 80–84

“7-year gap,” 82
Reciprocal teaching, 11
Reconceptualizing the unit and operations,

315
Recorder, 435
Reflective assessments, 412

in ThinkerTools, 412–413
Regrouping

subtraction with, 18–19
Relative thinking as multiplicative, 311
Relativism, 176
Reliability, 126
Religious practices, 113–118
Reporter, 301
Reporting phase, 427, 448–455
Representations, 372

anchoring themes in historical, 186
Reproductive success, 542
Revolution, 61

S
Sagan, Carl, 194, 196–197
Sales, Kirkpatrick, 208
Schemas

2-slot and 3-slot, 370
counting and quantity, 272

Schools Council History Project, 40, 177n
Science, 395–565

developing understanding through
model-based inquiry, 515–565

guided inquiry in the science
classroom, 475–513

information from the history of, 499
leaving many questions as yet

unanswered, 492
teaching to promote the development

of scientific knowledge and
reasoning about light at the
elementary school level, 421–474

unit on the nature of gravity and its
effects, 477–511

Science classrooms
guided inquiry in, 475–513

Scientific inquiry and How People Learn,
397–419

addressing preconceptions, 399–403

diagnosing preconceptions in physics,
404

the How People Learn framework,
411–415

knowledge of what it means to “do
science,” 403–407

Scientific method
misconceptions about, 414

Scissors-and-paste approach and textbook
claims and the nature of sources,
94

Searchers, The (film), 151
Second cycle of investigation

community knowledge from, 464
Second-hand investigation, 455–459
“Second-order” disciplinary concepts, 61,

73n
“Second-order” knowledge, 32–33, 41

acquisition of, 40–41
Secret knowledge, 72
Seeing for yourself and textbook claims

and the nature of sources, 93
Seixas, Peter, 151
Selective advantage, 542
Self-assessment, 12
Self-monitoring

importance of, 10–12
metacognitive monitoring, 10

Sensitivity
“7-year gap,” 82
7-year-olds understandings of, 277–

278
to students’ substantive assumptions,

127
Severin, Tim, 139, 142–143
Shemilt, Denis, 23, 56, 79–178, 595–596
Shrinking past, 160–161
Significance, 45

historical, 45
Simplicity, 389–390

6-year-olds understandings of, 274–
277

Skating Party game, 292–295
Skills

defining, 40
Sky Land, 286–287

Blastoff activity, 298–299
Smith, John, 122
Sources

access to someone who saw for
himself, 93

briefing sheet, 88–89
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distinguishing among kinds of claims,
101–102

generalizing, 102–107
getting behind the record to concerns

of the people who produced
them, 107–108

interpreting sources in context, 100
maintaining contact with an

eyewitness using knowledge
handed down through
generations, 93–94

the nature of, 84–111
scissors-and-paste approach, 94
seeing for yourself, 93
teacher questions, 92, 95–96, 99–101
trusting the source who was in a

position to know, 96
understanding the purpose of the

source, 96–99
understanding what is likely to get

recorded and under what
circumstances, 108–111

working out the facts from other
sources or available knowledge,
94–95

Splitting, 323
State of affairs

changes in, 44
Stearns, Peter, 210
Stewart, James, 23, 515–565, 596
“Stop-Start Challenge,” 333
Stopwatches

decimals and, 332–333
Stories

“embroidering,” 153
Strategic competence, 218
String challenges

guessing mystery objects, 329–331
Student assumptions about how we know

of the past, 123
Student conceptions

experimentation, 402
inadequacies in arguments, 403
interpretation of data, 403
of knowledge generation and

justification in science, 402–403
models, 402–403, 518

Student inquiry in genetics, 526–538
example of student work on a GCK

homework assignment, 535
genetic inquiry in the classroom, 529–

534

initial GCK population for the final
GCK inquiry, 537

meiotic processes governing
inheritance, 528

Mendel’s model of simple dominance,
528

Students’ errors and misconceptions based
on previous learning, 316–319

Students’ existing knowledge, 517–526
assessing knowledge claims in

genetics, 523
attending to, 544–545
black box, 520
building on and connecting, 258
learning genetics content, 524–526
providing students with learning

opportunities, 523–524
student conceptions of models, 518

Students’ preconceptions
importance of, 79

Study of light, 422–426
conceptual understanding, 423–424
metacognition, 426
prior knowledge, 425

Study of light through inquiry, 426–459
heuristic for teaching and learning

science through guided inquiry,
427–455

second-hand investigation, 455–459
Subconstructs

the many personalities of rational
number, 314–315

Subject-specific knowledge in effective
science instruction, 467–469

Substantiated accounts, 87
Substantive assumptions

sensitivity to students’, 127
Substantive concepts, 61–65

historical accounts not copies of the
past, 62–63

payment for work, 66–67
Subtraction with regrouping, 18–19
Supporting learning through cycles of

investigation, 460–467
Supporting skilled questioning and

explaining in mathematics
problem solving

supporting metacognition, 580–581
Supporting student and teacher learning

through a classroom discourse
community, 237
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T
Table of values to produce a function,

353–358
Teacher professional development in

Japan, 244
Teacher questions, 112–113, 115

and textbook claims and the nature
of sources, 92, 95–96, 99–101

Teachers’ conceptions and partial
understandings, 279–281

acquiring an understanding of
number as a lengthy, step-by-step
process, 280–281

counting words as the crucial link
between the world of quantity
and the world of formal symbols,
280–281

math as not about numbers, but
about quantity, 280

Teachers engaging students’
preconceptions, 219–231

common preconceptions about
mathematics, 220–222

engaging students’ preconceptions
and building on existing
knowledge, 223–231

Teaching
reciprocal, 11

Teaching and learning functions in
mathematics, 351–393

addressing the three principles, 359–
373

building conceptual understanding,
procedural fluency, and
connected knowledge, 364–369

building on prior knowledge, 359–
364

building resourceful, self-regulating
problem solvers, 371–373

linking formal mathematical
understanding to informal
reasoning, 354–355

making a table of values to produce a
function, 353–358

teaching functions for understanding,
373–389

teaching to achieve this kind of
understanding, 358–359

Teaching as Story Telling, 574
Teaching functions for understanding, 373–

389

Teaching mathematics in the primary
grades, 257–308

acknowledging teachers’ conceptions
and partial understandings, 279–
281

building on children’s current
understandings, 267–279

the case of number worlds, 282–302
comparing number worlds and

control group outcomes, 304
deciding what knowledge to teach,

259–267
defining the knowledge that should

be taught, 281–282
Teaching the rational number system, 309–

349
additive and multiplicative reasoning,

311
how students learn rational number,

341–343
instruction in rational number, 319–

340
rational-number learning and the

principles of How People Learn,
312–319

Teaching to promote the development of
scientific knowledge and
reasoning about light at the
elementary school level, 421–474

the role of subject-specific knowledge
in effective science instruction,
467–469

the study of light, 422–426
the study of light through inquiry,

426–459
supporting learning through cycles of

investigation, 460–467
Technical media, 496
Testimony, 41, 124, 135, 166
Testing

external, 181
Textbook claims

access to someone who saw for
himself, 93

briefing sheet, 88–89
distinguishing among kinds of claims,

101–102
generalizing, 102–107
getting behind the record to concerns

of the people who produced
them, 107–108

interpreting sources in context, 100



614 INDEX

maintaining contact with an
eyewitness using knowledge
handed down through
generations, 93–94

and the nature of sources, 84–111
scissors-and-paste approach, 94
seeing for yourself, 93
teacher questions, 92, 95–96, 99–101
trusting the source who was in a

position to know, 96
understanding the purpose of the

source, 96–99
understanding what is likely to get

recorded and under what
circumstances, 108–111

working out the facts from other
sources or available knowledge,
94–95

Themes, 44
anchoring in historical representation

and interpretation, 186
ThinkerTools, 407, 585
Third cycle of investigation

community knowledge from, 465
Third International Mathematics and

Science Study, 243
3-slot schema
for graphing a line, 370–371

Three subtraction methods, 224
Time, 41–43

change limited in, 45
periods in history, 43

Time lines, 129, 159
Timekeeper, 435
Torsion bar, 493–501
Transforming topics and objectives into

historical problems, 181–199
accounting for the “flat earth,” 189–

199
“problematizing” historical accounts,

184–188
Transmission errors, 123
Trusting the source who was in a position

to know
and textbook claims and the nature

of sources, 96
Truth

twisting, 105, 123
Tubes

a new approach to rational-number
learning, 322–324

a representation for fullness, 325–326

Turner, Frederick Jackson, 58
Twisting the truth, 105, 123

2-slot schemas, 370

U
“Underlying” causes, 35
Understanding

essential role of factual knowledge
and conceptual frameworks in,
6–9

experts remembering considerably
more relevant detail than novices
in tasks within their domain, 8–9

learning with understanding
supporting knowledge use in new
situations, 7

Understanding of number
a lengthy, step-by-step process, 280–

281
Understanding the purpose of the source

and textbook claims and the
nature of sources, 96–99

Understanding what is likely to get
recorded and under what
circumstances

and textbook claims and the nature
of sources, 108–111

Unit-level problem, 189–199
accounts of Colombian voyages, 192–

193
ancient views of the Earth as flat or

round, 196–197
Unit on the nature of gravity and its

effects, 477–511
United Kingdom

adjusting data from, 177n
Schools Council History Project, 40,

177n
Units

on filling the world with people, 169
on first contacts, whether St. Brendan

sailed from Ireland to America,
171

on first contacts, why the Norse
colonists didn’t stay in America,
172

on people going their separate ways,
170
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V
Verbal interpretations, 372
Visual proportional estimation

starting from, and halving and
doubling, 323–324

W
War (card game), 336
Warm-Up period, 298, 300
Water and air in a straw, 486–488
Website, 562n
“Weighing” an object in a fluid medium,

488–489
Weighing-in-a-vacuum situation, 484, 489
Whole number

central conceptual structure for, 261–
262, 275

Wilson, Suzanne M., 596
Wineburg, Samuel S., 100
Wisdom, 236, 238
Woodbury, Jasper, 391
Word Problems test, 264–265
Words

versus notations, 230
Words in stories

explaining, 132–133

Work
payment for in history, 66–67

Working out the facts from other sources
or available knowledge

and textbook claims and the nature
of sources, 94–95

Working things out for ourselves, 133–138
being aware of how we are thinking,

135
going beyond face value, 134
how far a leather boat could have

managed to sail, 139–141
Working through the task, 128–164
Working with evidence

Pilgrim Fathers and Native Americans,
84–119

preparing for the task, 121–128
the St. Brendan’s voyage task, 128–

164
World’s Fair of 1892, 208
Wrap-Up period, 301
Written Arithmetic test, 264–265

Y
Year-long historical questions, 184–188
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